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Abstract

Manski [2004] analyzes the relationship between the distribution of traders’ beliefs
and the equilibrium price in a prediction market with risk neutral traders. He finds
that there can be a substantial difference between the mean belief that an event will
occur, and the price of an asset that pays one dollar if the event occurs and otherwise
pays nothing. This result is puzzling, since these markets frequently produce excellent
predictions. This paper resolves the apparent puzzle by demonstrating that both risk
aversion and the distribution of traders’ beliefs significantly affect the equilibrium
price. For coefficients of relative risk aversion near those estimated in empirical
studies and for plausible belief distributions, the equilibrium price is very near the
traders’ mean belief. The paper also describes a proposed test of the relationship
between the predicted market equilibrium and the distribution of traders beliefs. this
test includes a prediction market that is run concurrently with a belief elicitation
procedure and an elicitation procedure for risk attitudes.
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1 Introduction

Prediction markets have been used frequently to estimate the probability of future events.

In 1988 the Iowa Political Stock Market predicted the outcome of the U.S. presidential elec-

tion more accurately than all major polls. (See Forsythe, Nelson, Neumann, and Wright

[1992].) The methodology has been extended to numerous political and economic events,

and provides accurate predictions in many contexts. Plott, Wit, and Yang [2003] demon-

strate experimentally that prediction markets can aggregate widely dispersed information

effectively, even when there are many states. Several informal explanations for the success

of these markets are presented in the prediction market literature. These explanations in-

clude the importance of financial incentives, self-selection toward better informed traders,

the information aggregation capabilities of markets, and the feedback loop that a market

creates, in which the market price is used by traders to update beliefs, and these updated

beliefs lead to a price that more accurately reflects the asset value.

Manski [2004] argues that these informal explanations don’t provide an adequate basis

for interpretation of prices in prediction markets. He demonstrates the potential inter-

pretation problem by comparing the equilibrium price to the mean belief in a prediction

market populated with traders who are risk-neutral and have heterogeneous beliefs, and

finds conditions under which the mean belief and the equilibrium price differ substantially.

Manski’s approach, which starts from traders’ expected utility functions and beliefs and

derives the equilibrium price, is an important step toward understanding the relationship

between agents’ characteristics and the equilibrium price in a prediction market. The pur-

pose of this paper is to extend analysis of prediction markets to include risk aversion, and

also to examine the role of the distribution of traders’ beliefs in the determination of the

equilibrium price. This analysis demonstrates several useful relationships between risk at-

titudes, beliefs, and equilibrium prices for these markets. In the risk neutral case with a

symmetric distribution of beliefs, the equilibrium price lies between the mean of the belief

distribution and the price one half. When traders have CRRA expected utility functions,

this bias diminishes as the coefficient of relative risk aversion increases, and the bias dis-

appears when the coefficient of relative risk aversion is one. At that point, the equilibrium

price is equal to the mean belief for any distribution of beliefs. If the coefficient of relative

risk aversion exceeds one, the direction of the bias reverses: when the mean belief is greater

than one half, the price is above the mean belief, and when the mean belief is below one

1



PREDICTION MARKET EQUILIBRIUM 2

half, the price is below the mean belief. For coefficients of relative risk aversion between

0.5 and 1.5, which are typical estimates (see for example Hansen and Singleton [1982], Cox

and Oaxaca [1996], and Holt and Laury [2002]), and for several unimodal distributions of

traders’ beliefs, numerical analysis demonstrates that prediction market forecasts are close

to the mean of the distribution of traders’ beliefs.

Section 2 describes the prediction market assets, and derives agents’ asset demands.

In Section 3, market asset demand is derived, and the relationship between the traders’

coefficient of relative risk aversion and the equilibrium price is determined for symmetric

belief distributions. In Section 4, an example of Manski’s model is constructed, and this

is compared to properties of the equilibrium price for prediction markets with unimodal

belief distributions. Section 5 reviews the conclusions of the paper, and describes possible

experimental tests of the main results of the paper.

2 Prediction market assets and demands

Prediction markets are designed with two or more assets, each of which corresponds to a

discrete event. In practice, markets are created with mutually exclusive and unambiguous

events, such as “the Democratic party candidate will win the 2004 U.S. presidential elec-

tion,” or “the Democratic party candidate will not win the 2004 election.” In mathematical

terms, we can call these events ‘state A’, denoted sA , and ‘state B’, denoted sB . Assets

A and B that correspond to these states are created by the market designer. Asset A has

dividend $1 in state sA and dividend $0 in state sB ; asset B has dividend $0 in sA and

dividend $1 in sB . Agents are able to purchase bundles of assets A and B from the market

for $1 or sell bundles of assets A and B to the market for $1, and they also are able to trade

assets with other agents in the market.

Simple arbitrage opportunities in these markets are rare. If the market prices of A and

B are pA and pB , and if pA + pB > $1, then an agent can purchase a bundle of assets A and

B from the market for $1 and sell the assets individually at a profit. If pA + pB < $1 then

an agent is able to purchase assets separately from other agents and sell the bundle to the

market at a profit. Consequently in the analysis that follows, we assume the no arbitrage

condition pA + pB = $1.

For agent i with initial wealth level wi her final wealth level at prices pA and pB , if

she holds mi units of A and ni units of B, is wi + mi (1 − pA) − ni pB in state sA and
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wi − mi pA + ni (1 − pB) in state sB . Under the no arbitrage condition, these wealth levels

are wi + (mi − ni) (1 − pA) in sA and wi − (mi − ni) pA in sB .

The representation of final wealth levels can be simplified by observing that an allocation

of mi > 0 units of A and ni > 0 units of B, with mi > ni, is equivalent to the allocation

with mi−ni units of A, no unit of B, and ni units of a riskless asset. Similarly, an allocation

of mi > 0 units of A and ni > 0 units of B, with mi < ni, is equivalent to the allocation

with ni − mi units of B, no unit of A, and mi units of a riskless asset. Consequently, we

restrict attention to asset holdings mi ≥ 0 and ni ≥ 0 with mi ni = 0.

Suppose that agent i wants to reach the asset position (mi, ni) with mi > 0 units of

asset A and no unit of asset B. One way to reach this position is to purchase mi units of A

from other agents. If agent i wants to hold mi = 0 units of A and no unit of B, one way to

do this is with a purchase of ni bundles of assets A and B from the market and the sale of

ni units of asset A. This observation can be used to simplify representation of the decision

problem. If agent i has a positive demand for ni units of asset B, this is equivalent to a

supply of ni units of asset A. Therefore the decision problem for agent i can be represented

in terms of a single decision variable qi = mi−ni, and final wealth levels are wi + qi (1−pA)

in sA and wi − qi pA in sB .

Assume that, for some θ ∈ (−∞,∞), agent i has the constant relative risk averse

(CRRA) expected utility function

ui(wi) =




w1−θ
i

1−θ , if θ �= 1,

lnwi, if θ = 1.

If agent i has a subjective belief πi that sA will occur, and belief 1 − πi that sB will occur,

then the agent’s decision problem is to choose qi to maximize

E[ui(wi, qi)] =




1
1−θ

(
(wi + qi (1 − pA))1−θ πi + (wi − qi pA)1−θ (1 − πi)

)
, if θ �= 1;

πi ln(wi + qi (1 − pA)) + (1 − πi) ln(wi − qi pA), if θ = 1.

For θ > 0, the expected utility maximization problem has an interior maximum that

solves the first-order condition

∂E[ui(wi, qi)]
∂qi

= (1 − pA) (wi + qi (1 − pA))−θπi − pA (wi − qi pA)−θ (1 − πi) = 0.

The solution to this equation is

q∗i (pA , πi, θ, wi) =

(
(1 − pA)

1
θ π

1
θ
i − p

1
θ

A (1 − πi)
1
θ

)
wi

(1 − pA) p
1
θ

A (1 − πi)
1
θ + pA (1 − pA)

1
θ π

1
θ
i

. (1)
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Equation (1) represents the demand of agent i with belief πi ∈ (0, 1), coefficient of

relative risk aversion θ > 0, and initial wealth wi > 0. For (pA , πi, θ) ∈ (0, 1)×(0, 1)×(0,∞)

the denominator in equation (1) is positive. When πi > pA the numerator in equation (1)

is positive, and when πi < pA the numerator is negative. This result is intuitive: if agent i

has belief πi that sA will occur exceeds the price pA of asset A, then agent i will hold asset

A, whereas if πi < pA , agent i will prefer to sell asset A.

For θ ≤ 0, the expected utility maximizing choice is at the boundary of the choice

set. The demand correspondence for the risk neutral case (θ = 0) is easily determined by

examining equation (1) as θ → 0. When πi > pA , p
1
θ

A (1 − πi)
1
θ

/(
(1 − pA)

1
θ π

1
θ
i

)
→ 0

as θ → 0. Therefore q∗i (pA , πi, θ, wi) → wi

p
A

as θ → 0 for πi > pA . When πi < pA ,

(1 − pA)
1
θ π

1
θ
i

/(
p

1
θ

A (1 − πi)
1
θ

)
→ 0 as θ → 0, so q∗i (pA , πi, θ, wi) → − wi

1−p
A

as θ → 0. A

risk neutral agent with πi = pA is indifferent between holding asset A, asset B, and a risk-

less asset. Since risk seeking agents (θ < 0) also choose to invest all of their initial wealth

in asset A if πi > pA and in asset B if πi < pA , the demand correspondence for asset A is

q∗i (pA , πi, θ, wi) =




wi
p
A

, if πi > pA ;[
− wi

1−p
A

, wi
p
A

]
, if πi = pA ;

− wi
1−p

A
, if πi < pA

(2)

for risk neutral and risk seeking agents (θ ≤ 0).

3 Risk attitudes and market equilibrium

Individual asset demands determine market asset demand, and hence market equilibrium,

once agents’ coefficients of relative risk aversion and the joint distribution of beliefs and

initial wealth levels are specified. Under the assumptions – maintained throughout this

paper – that all traders have the same CRRA expected utility function with coefficient θ

and that the distributions of beliefs and wealth levels are independent, market demand is

Q∗(pA , θ) =
∫ ∞

0

∫ 1

0
q∗ (pA , π, θ, w) f(π) g(w) dπ dw. (3)

This section uses this market demand to describe the relationship between an asset’s equi-

librium price and the mean of traders’ beliefs that the event will occur.
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Mean beliefs and equilibrium with logarithmic utility (θ = 1)

The logarithmic expected utility function, which is the limit of a CRRA expected utility

function as θ → 1, is an interesting special case. For this specification of expected util-

ity, Theorem 1 shows that the equilibrium price is equal to the belief distribution mean,

regardless of the specification of the distribution of traders’ beliefs.

Theorem 1 If the distributions of agents’ beliefs and wealth levels have densities f(π) and

g(w), and these distributions are independent, and if all agents have the expected utility

function u(w) = lnw, then Q∗(pA , 1) is linear and Q∗(µ, 1) = 0, so p∗
A

= E[π] is the unique

equilibrium price.

Proof With θ = 1, agent i has the demand function q∗i (pA , πi, 1, w) = (πi − p
A

) w

p
A

(1−p
A

)
for

asset A. Substitute individual demand into the market demand from equation (3) to get

Q∗(pA , 1) =
1

pA (1 − pA)

∫ ∞

0

[∫ 1

0
(π − pA) f(π) dπ

]
w g(w) dw

=
E[w]

pA (1 − pA)
(E[π] − pA).

The unique equilibrium price for this market is therefore p ∗
A

= E[π], i.e., the equilibrium

price p ∗
A

is equal to the mean µ of the distribution of traders’ beliefs.

Mean beliefs and equilibrium with general CRRA preferences

For values of θ other than θ = 1, the relationship between the belief distribution mean

and the equilibrium price is not as sharp as it is with logarithmic utility, yet it is still

possible to provide a useful characterization of this relationship when the belief distribution

is symmetric about its mean. The remainder of this section examines the relationship

between the equilibrium price p ∗
A

and the mean belief µ for θ ∈ (−∞, 0] ∪ (
1/2, 1

) ∪ (1,∞).

Theorem 2 below shows that for a symmetric distribution of beliefs and risk neutral utility,

which corresponds to CRRA expected utility with θ = 0, and for risk-seeking utility (θ < 0),

the equilibrium price p ∗
A

lies between the mean of the distribution of beliefs and the price

pA = 1/2. Theorem 2 also shows that this result holds for θ ∈ (
1/2, 1

)
. Theorem 1 above has

shown that for θ = 1, the equilibrium price is exactly equal to the mean of the distribution

of beliefs. For θ > 1 Theorem 2 shows that the equilibrium price is above the mean µ

of the belief distribution if µ > 1/2, and the equilibrium price is below the mean µ of the

belief distribution if µ < 1/2. Figure 1 illustrates these results for several unimodal belief

distributions that are approximately uniform. Along the curve labelled µ = 0.7 in the
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figure, the belief distribution is Beta(1.01, 1.01) on the interval [0.4, 1], and the curve shows

the equilibrium price for θ ∈ [0, 2]. The other four curves show the equilibrium price as a

function of θ for four other belief distributions. These distributions are Beta(1.01, 1.01) on

the intervals [0.2, 1] (µ = 0.6), [0, 1] (µ = 0.5), [0, 0.8] (µ = 0.4), and [0, 0.6] (µ = 0.3). The

figure shows that for θ ∈ [0, 1), p ∗
A

is between µ and p = 1/2; for θ = 1 the equilibrium price

is equal to µ; and for θ ∈ (1, 2] the equilibrium price is further from 1/2 than µ is from 1/2.

Θ

Θ � 1p�

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.25

0.50

0.75

Μ � 0.3

Μ � 0.4

Μ � 0.5

Μ � 0.6

Μ � 0.7

Figure 1: Equilibrium price as a function of θ for several values of µ

For a demand distribution that is symmetric about its mean belief µ, these results are

demonstrated by determining the sign of the sum of the demands for an agent with belief

π = µ + δ and for an agent with belief π = µ − δ, with the demands evaluated at pA = µ.

The net demand for asset A by a risk-averse agent with belief π is given by equation (1).

From equation (1) it follows that these traders have asset demands

q∗ (µ, µ + δ, θ, w) =

(
(1 − µ)

1
θ (µ + δ)

1
θ − µ

1
θ (1 − µ − δ)

1
θ

)
w

(1 − µ)µ
1
θ (1 − µ − δ)

1
θ + µ (1 − µ)

1
θ (µ + δ)

1
θ

=

(
(1 + δ

µ)
1
θ − (1 − δ

1−µ)
1
θ

)
w

(1 − µ) (1 − δ
1−µ)

1
θ + µ (1 + δ

µ)
1
θ

(4)

and

q∗ (µ, µ − δ, θ, w) =

(
(1 − µ)

1
θ (µ − δ)

1
θ − µ

1
θ (1 − µ + δ)

1
θ

)
w

(1 − µ)µ
1
θ (1 − µ + δ)

1
θ + µ (1 − µ)

1
θ (µ − δ)

1
θ

=

(
(1 − δ

µ)
1
θ − (1 + δ

1−µ)
1
θ

)
w

(1 − µ) (1 + δ
1−µ)

1
θ + µ (1 − δ

µ)
1
θ

. (5)
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The idea behind the proof of Theorem 2 is straightforward. If the belief distribu-

tion is symmetric about µ and q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w) > 0 holds for each

δ ∈ (0, min{µ, 1 − µ}), then market demand Q∗(pA , θ) is positive at pA = µ, so p ∗
A

> µ. On

the other hand, if q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w) < 0 for all δ ∈ (0, min{µ, 1 − µ}),
then p ∗

A
< µ. Therefore the equilibrium price relative to the mean µ of a symmetric belief

distribution is determined by the sign of q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w).

Comparison between q∗(µ, µ + δ, θ, w) and −q∗(µ, µ− δ, θ, w) is simplified by separately

comparing the numerators and the denominators of these two expressions. To simplify no-

tation, write q∗ (µ, µ + δ, θ, w) =
n

L
(µ, θ, δ) w

d
L

(µ, θ, δ)
and q∗ (µ, µ − δ, θ, w) =

n
R

(µ, θ, δ) w

d
R

(µ, θ, δ)
. Lemma 1

compares nL(µ, θ, δ) to −nR(µ, θ, δ); Lemma 2 compares dL(µ, θ, δ)−1 to dR(µ, θ, δ)−1;

Lemma 3 combines these two results to compare q∗ (µ, µ + δ, θ, w) to −q∗ (µ, µ − δ, θ, w).

Lemma 4, which shows that the asset demand function is a decreasing function of pA , is

used to prove uniqueness of equilibrium.

Lemma 1 If nL(µ, θ, δ)w is the numerator in equation (4) and nR(µ, θ, δ)w is the

numerator in equation (5), then nL(µ, θ, δ) > −nR(µ, θ, δ) when µ > 1/2 and θ > 1 or

when µ < 1/2 and θ < 1. When µ < 1/2 and θ > 1 or when µ > 1/2 and θ < 1, the inequality

is reversed, i.e., nL(µ, θ, δ) < −nR(µ, θ, δ).

Proof The proof is provided in the appendix.

Lemma 2 If dL(µ, θ, δ) is the denominator in equation (4) and dR(µ, θ, δ) is the denom-

inator in equation (5), then dL(µ, θ, δ)−1 > dR(µ, θ, δ)−1 when µ > 1/2 and θ > 1 or when

µ < 1/2 and θ ∈ (
1/2, 1

)
. When µ < 1/2 and θ > 1 or when µ > 1/2 and θ ∈ (

1/2, 1
)
, the

inequality is reversed, i.e., dL(µ, θ, δ)−1 < dR(µ, θ, δ)−1.

Proof The proof is provided in the appendix.

Lemma 3 For µ > 1/2 and θ > 1, q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w) > 0. The same

inequality also holds for µ < 1/2 and θ ∈ (
1/2, 1

)
. For µ > 1/2 and θ ∈ (

1/2, 1
)

or for µ < 1/2

and θ > 1, q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w) < 0.

Proof The sign of q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w) can be determined from the com-

parisons between nL(µ, θ, δ) and −nR(µ, θ, δ) in Lemma 1 and between dL(µ, θ, δ)−1 and

dR(µ, θ, δ)−1 in Lemma 2. When µ > 1/2 and θ > 1 or when µ < 1/2 and θ < 1 Lemma 1

shows that nL(µ, θ, δ) > −nR(µ, θ, δ). When µ > 1/2 and θ > 1 or when µ < 1/2

and θ ∈ (
1/2, 1

)
Lemma 2 shows that dL(µ, θ, δ)−1 > dR(µ, θ, δ)−1. This implies that
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nL (µ, θ, δ)/dL(µ, θ, δ) > −nR (µ, θ, δ)/dR(µ, θ, δ) for µ > 1/2 and θ > 1 or for µ < 1/2 and

θ ∈ (
1/2, 1

)
.

A similar argument shows that the opposite inequality holds for µ > 1/2 and θ ∈ (
1/2, 1

)
or for µ < 1/2 and θ > 1.

Lemma 4 The asset demand function q∗ (pA , π, θ, w) in equations (1) and (2) is a decreasing

function of pA for all (π, θ, w) ∈ (0, 1) × (−∞,∞) × (0,∞).

Proof The proof is provided in the appendix.

Theorem 2 Suppose that all agents have the same CRRA expected utility function, that

the distributions of beliefs and wealth levels are independent, and that the distribution

of agents’ beliefs is symmetric about its mean µ. Then for θ ∈ (−∞, 0] ∪ (
1/2, 1

)
the

equilibrium price p ∗
A

lies between µ and 1/2 (i.e., p ∗
A

∈ (min{µ, 1/2}, max{µ, 1/2})). For

θ > 1 the equilibrium price lies in (0, µ) if µ < 1/2 and it lies in (µ, 1) if µ > 1/2.

Proof Market demand for asset A evaluated at p ∗
A

= µ is

Q∗(µ, θ) =
∫ ∞

0

∫ 1

0
q∗ (µ, π, θ, w) f(π) g(w) dπ dw

=
∫ ∞

0

∫ min{µ,1−µ}

0
(q∗ (µ, µ + δ, θ, w) + q∗ (µ, µ − δ, θ, w)) f(µ + δ) g(w) dδ dw

=
∫ ∞

0

[∫ min{µ,1−µ}

0

(
n

L
(µ, θ, δ)

d
L

(µ, θ, δ)
+

n
R

(µ, θ, δ)

d
R

(µ, θ, δ)

)
f(µ + δ) dδ

]
w g(w) dw

= E[w]
∫ min{µ,1−µ}

0

(
n

L
(µ, θ, δ)

d
L

(µ, θ, δ)
+

n
R

(µ, θ, δ)

d
R

(µ, θ, δ)

)
f(µ + δ) dδ.

The first equality above holds by definition. The second holds because f(π) is symmetric

around µ. The third holds from equations (4) and (5), and the definitions of nL (·), nR (·),
dL (·), and dR (·). The fourth equality follows from integration with respect to w. Finally,

Q∗(µ, θ) has the same sign as the integrand nL (µ, θ, δ)/dL(µ, θ, δ)+nR (µ, θ, δ)/dR(µ, θ, δ),

which is determined in Lemma 3. For µ > 1/2 and θ > 1 and for µ < 1/2 and θ ∈ (
1/2, 1

)
the integrand is positive. Therefore, by Lemma 4 there is an equilibrium price p ∗

A
> µ and

p ∗
A

is unique. When µ > 1/2 and θ ∈ (
1/2, 1

)
or when µ < 1/2 and θ > 1, the integrand is

negative so there is a unique equilibrium price p ∗
A

< µ.

For θ ∈ (−∞, 0], by equation (2) q∗(µ, µ + δ, θ, w) = w
µ and q∗(µ, µ − δ, θ, w) = − w

1−µ ,

so q∗(µ, µ + δ, θ, w) + q∗(µ, µ− δ, θ, w) = (1−2 µ) w
µ (1−µ) . When µ > 1/2, this is negative so p ∗

A
< µ

and when µ < 1/2, this is positive so p ∗
A

> µ.
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Theorems 1 and 2 describe the relationship between the market equilibrium price and

the mean belief for θ ∈ (−∞, 0] and for θ > 1/2. Lemma 2 doesn’t hold for θ ∈ (
0, 1/2

)
, so

the technique used in the proof of Theorem 2 can’t be extended to this interval. Numerical

analysis however suggests that the inequality q∗ (µ, µ + δ, θ, w)+q∗ (µ, µ − δ, θ, w) < 0 holds

for all values of θ ∈ (
0, 1/2

)
when µ > 1/2, and the opposite inequality holds when µ < 1/2.

Theorem 2 has an interesting application to the favorite-longshot bias, which has been

established in numerous empirical studies of gambling. Typically, longshots win less fre-

quently than the probability implicit in their odds (or prices) suggest, and favorites win more

frequently than their odds suggest. One common explanation for this is risk-seeking bettors.

See, for example, Ali [1977]. This explanation is somewhat puzzling since risk aversion is

prevalent. Only a very strong self-selection among bettors would lead to a population of

bettors that is risk-seeking on average. Theorem 2 indicates that the favorite-longshot bias

is consistent with risk-aversion, provided that the coefficient of risk aversion is less than one

and the belief distribution is symmetric. The last example in the next section demonstrates

further that there are asymmetric distributions that also lead to the favorite-longshot bias.

Another explanation of the favorite-longshot bias, proposed by Thaler and Ziemba [1988],

is that traders have biased probability judgments. Yet Theorem 2 and the examples in the

next section show that the favorite-longshot bias is consistent with a standard expected

utility model under natural assumptions about risk attitudes and beliefs.

4 Beliefs and market equilibrium

The first example in this section demonstrates the role of beliefs in Manski’s model. Manski

considers belief distributions that are highly dispersed, and are concentrated in the limit on

two points (e.g., a fraction p of the traders believe the event will occur with certainty, and

a fraction 1 − p believe it will occur with probability p). The first example demonstrates

the effect that these limiting two-point distributions have on the relationship between belief

distribution mean and equilibrium price. It is more plausible that belief distributions are

unimodal, so this section also includes examples of unimodal Beta distributions. In these

latter examples, equilibrium prices are close to mean beliefs for all values of the coefficient

of relative risk aversion.
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Example of Manski’s model

Demand of a risk neutral agent is given by equation (2). If the market price of asset A

is pA , then an agent with belief πi > pA will invest her entire initial wealth in asset A and

have demand wi/pA , and an agent with belief πi < pA will invest her entire initial wealth in

asset B and have demand −wi/(1 − pA) for asset A. The dashed line in figure 2 (a) shows

the demand for agents with income wi = 1, asset price pA = 0.4, and beliefs πi ∈ (0, 1). The

scale on the left axis represents the level of the agents’ net demands for asset A.

(a) High mean belief (b) Low mean belief
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Figure 2: Asset demand and belief distributions in Manski’s model

Figure 2 (a) also depicts a belief distribution for agents, in which 3/5 of the traders

expect that sA will be realized with probability that is approximately (but just below) 0.4

and 2/5 of the traders expect that sA will be realized with probability that is approximately

1.0. (The scale for the probability density is shown on the right axis in figure 2 (a).) With

these beliefs, pA = 0.4 is the equilibrium price for asset A, since 3/5 of the agents demand

−5/3 units, and 2/5 of the agents demand 5/2 units. Finally, the mean of this belief

distribution is approximately µ = 0.64. Figure 2 (b) depicts another belief distribution for

traders. In this figure, pA = 0.4 is still the equilibrium price, and the mean of this belief

distribution is approximately µ = 0.16. This example illustrates Manski’s main result: for

risk neutral agents if the observed market price is pA , then the mean of the belief distribution

lies in the interval (p2
A
, 2 pA − p2

A
).

Numerical analysis of equilibrium with unimodal belief distributions

Unimodal belief distributions are more plausible than the bimodal belief distributions,

or their limiting two point distributions, that Manski considers. Returning to the example

of the 2004 U.S. presidential election, it is unlikely that a fraction 1 − p of the voters
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believe that the democratic candidate will win with certainty, and a fraction p believe that

the democratic candidate will win with probability 1 − p. This section concludes with

numerical analysis of equilibrium prices for several distributions, including Beta(1.01, 1.01)

belief distributions, Beta(2, 2) belief distributions, and skewed Beta distributions. The

Beta(1.01, 1.01) distributions are approximately uniform but are unimodal. The densities

of Beta(2, 2) distributions are parabolic. In all of these examples, equilibrium prices are

very close to the mean of the belief distribution under natural assumptions about the level

of traders’ risk aversion.

Figure 1 (in Section 3) shows the relationship between µ and p ∗
A

as a function of θ for five

different values of µ, when the distributions of beliefs are Beta(1.01, 1.01) (approximately

uniform). Figure 3 shows examples of the relationship between the mean of the belief distri-

bution and the equilibrium price for five different Beta(2, 2) distributions. The five different

Beta(1.01, 1.01) distributions used in figure 1 have their supports on the intervals [0.4, 1.0]

(labelled µ = 0.7), [0.2, 1] (labelled µ = 0.6), [0, 1], [0, 0.8], and [0, 0.6]. In order to facilitate

comparison with the Beta(1.01, 1.01) belief distributions, the five Beta(2, 2) distributions

used in the example in figure 3 have the same supports as the five Beta(1.01, 1.01) dis-

tributions in figure 1. Comparison of these two figures shows that the equilibrium price

with a Beta(2, 2) belief distribution is closer to the mean of the belief distribution than in

the case of Beta(1.01, 1.01) belief distributions. For the coefficients of relative risk aversion

θ ∈ [0.68, 0.97] that Hansen and Singleton [1982] estimate, the equilibrium price is within

$0.008 of µ for each of the Beta(2, 2) distributions shown in figure 3.

Θ

Θ � 1p�

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.25

0.50

0.75

Μ � 0.3

Μ � 0.4

Μ � 0.5

Μ � 0.6

Μ � 0.7

Figure 3: Equilibrium price as a function of θ with Beta(2, 2) belief distributions
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Figure 4: Equilibrium prices with asymmetric (e.g, Beta(7, 3)) belief distributions

With the exception of Theorem 1, which applies to any belief distribution, the analysis

in Theorem 2 and the numerical examples above treat the case of symmetric belief dis-

tributions. The final example in this paper, in figure 4, shows the equilibrium price as a

function of θ for four different asymmetric belief distributions. In this figure, the distribu-

tions are Beta(7, 3) (µ = 0.7), Beta(3, 2) (µ = 0.6), Beta(2, 3) (µ = 0.4), and Beta(3, 7)

(µ = 0.3). These examples demonstrate that the main results of this paper hold at least

for some distributions that are quite skewed, so that the main result isn’t restricted only to

symmetric distributions. In fact, we can see from this figure that not only are equilibrium

prices related to belief distribution means in the same way as with the Beta(1.01, 1.01) and

Beta(2, 2) distributions, but the equilibrium prices are closer to mean belief than they are

for the Beta(1.01, 1.01) and Beta(2, 2) distributions.

5 Conclusions

Prediction markets are remarkably accurate information aggregation mechanisms. The

equilibrium model in Manski [2004] is an important first step toward understanding the re-

lationship between equilibrium prices and economic primitives – such as agents’ preferences

and the distribution of their beliefs – in prediction markets. This paper extends his analysis

to include both risk aversion and unimodal belief distributions. Since empirical estimates

of coefficients of relative risk aversion are frequently near one, which is the coefficient of

relative risk aversion for logarithmic utility, this case is important. With logarithmic utility,

the equilibrium price equals the mean of the belief distribution, regardless of the distribu-
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tion of traders’ beliefs. To the extent that the mean belief is itself a good predictor of an

event, this is an encouraging result.

Under more restrictive conditions on the distribution of beliefs (i.e., the distribution of

beliefs is symmetric), this paper has also demonstrated that the bias in the equilibrium

price relative to the mean belief diminishes as the coefficient of relative risk aversion ap-

proaches one. In addition, even when the coefficient of relative risk aversion differs from

one, the magnitude of the difference between the equilibrium price and the mean belief

is small when the belief distribution is approximately uniform, and smaller yet when the

traders’ beliefs have a Beta(2, 2) distribution. Based on the numerical analysis for several

Beta(1.01, 1.01) distributions, for several Beta(2, 2) distributions, and for several skewed

Beta distributions, it is reasonable to expect that this difference between equilibrium price

and belief distribution mean decreases as the variance of the belief distribution decreases.

Important problems remain to be solved before we understand how prediction markets

aggregate information. By indicating relationships that exist among traders’ beliefs, their

risk aversion, and the resulting market price, the analysis in this paper should stimulate

empirical questions about prediction markets. A belief elicitation procedure similar to

the one employed by Nyarko and Schotter [2002] in their normal form game experiment,

combined with elicitation of coefficients of risk aversion, as in Holt and Laury [2002], could be

used to examine the consistency of the predictions of this model. A simpler consistency test

could be developed using a controlled laboratory experiment similar to Plott et al. [2003], in

which beliefs are induced through the differentiated information revealed to each subject. In

such an experiment, a consistency check for the model could be performed by eliciting risk

coefficients and then comparing observed prices to the predicted prices from the prediction

market equilibrium model. In addition, since the difference between the mean belief and the

equilibrium price is a function of the coefficient of relative risk aversion, the model predicts

that the accuracy of the market price is related to the coefficient of relative risk aversion.

Consequently, prediction market experiments that also estimate coefficients of risk aversion

will simultaneously produce estimates of the probability of an event (its market price) and

an estimate of the difference between the price and the traders’ mean belief that the event

will occur. Further examination of these questions may be useful for understanding the

role of agents’ characteristics – such as risk aversion, belief distributions, and changes to

traders’ beliefs during the course of trading – in the formation of asset market prices.
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Appendix

Lemma 1 If n
L
(µ, θ, δ)w is the numerator in equation (4) and n

R
(µ, θ, δ)w is the numerator

in equation (5), then n
L
(µ, θ, δ) > −n

R
(µ, θ, δ) when µ > 1/2 and θ > 1 or when µ < 1/2 and

θ < 1. When µ < 1/2 and θ > 1 or when µ > 1/2 and θ < 1, the inequality is reversed, so that

n
L
(µ, θ, δ) < −n

R
(µ, θ, δ).

Proof From the assumption that µ > 1/2 it follows that δ
µ < δ

1−µ . For θ > 1 the function g(x) = x
1
θ

is concave so (
1 + δ

µ

) 1
θ

+
(
1 − δ

µ

) 1
θ

>
(
1 + δ

1−µ

) 1
θ

+
(
1 − δ

1−µ

) 1
θ

. (A.1)

This inequality can be rewritten as(
1 + δ

µ

) 1
θ −

(
1 − δ

1−µ

) 1
θ

> −
((

1 − δ
µ

) 1
θ −

(
1 + δ

1−µ

) 1
θ

)

which is equivalent to the inequality n
L
(µ, θ, δ) > −n

R
(µ, θ, δ).

The three other cases are easily treated by examining inequality (A.1). For θ > 1 with µ < 1/2,

inequality (A.1) is reversed, since in that case the order of 1 − δ
1−µ and 1 − δ

µ is reversed, as is the

order of 1 + δ
1−µ and 1 + δ

µ . For µ > 1/2 and θ < 1, inequality (A.1) is again reversed, this time

because g(x) = x
1
θ is convex rather than concave. Finally, for µ < 1/2 and θ < 1, inequality (A.1)

holds so that n
L
(µ, θ, δ) > −n

R
(µ, θ, δ).

Lemma 2 If d
L
(µ, θ, δ) is the denominator in equation (4) and d

R
(µ, θ, δ) is the denominator

in equation (5), then d
L
(µ, θ, δ)−1 > d

R
(µ, θ, δ)−1 when µ > 1/2 and θ > 1 or when µ < 1/2 and

θ ∈ (
1/2, 1

)
. When µ < 1/2 and θ > 1 or when µ > 1/2 and θ ∈ (

1/2, 1
)
, the inequality is reversed,

so that d
L
(µ, θ, δ)−1 < d

R
(µ, θ, δ)−1.

Proof From equations (4) and (5), the inequality d
L
(µ, θ, δ)−1 > d

R
(µ, θ, δ)−1 is equivalent to

(1 − µ)
((

1 + δ
1−µ

) 1
θ −

(
1 − δ

1−µ

) 1
θ

)
> µ

((
1 + δ

µ

) 1
θ −

(
1 − δ

µ

) 1
θ

)
. (A.2)

Note that the left side of equation (A.2) is 2 δ times the slope of the segment from a to e in figure 5,

and the right side of equation (A.2) is 2 δ times the slope of the segment from b to d in the same

figure, so the argument proceeds by a comparison of these slopes.

Let m
ij

be the slope from i to j in figure 5, for i, j ∈ {a, b, c, d, e} and i �= j. The slope from a

to e is m
ab

= 1/2 (m
ac

+ m
ce

). Similarly, m
bd

= 1/2 (m
bc

+ m
cd

).

For θ > 1, the derivative of g(x) = x
1
θ is decreasing, so m

ac
> m

bc
. For the same reason,

m
cd

> m
ce

. Since g′′(x) = 1
θ

(
1
θ − 1

)
x

1
θ −2 is negative for θ > 1, g(x) is decreasing at a decreasing

rate so m
ac
−m

bc
> m

cd
−m

ce
, or m

ac
+ m

ce
> m

bc
+ m

cd
. Therefore the inequality (A.2) holds for

µ > 1/2 and θ > 1.

The direction of the inequality is reversed if µ < 1/2, since in that case the order of 1− δ
1−µ and

1 − δ
µ is reversed, as is the order of 1 + δ

1−µ and 1 + δ
µ .
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Figure 5: Representation of inequality (A.2) with θ > 1

If µ > 1/2 and θ ∈ (
1/2, 1

)
, then the direction of inequality (A.2) is reversed if mae < m

bd
in a

diagram analogous to the one in figure 5 with θ ∈ (
1/2, 1

)
. In this case, the function g(x) = x

1
θ is

convex rather than concave, so m
bc

> m
ac

. Similarly, m
ce

> m
cd

.

The second derivative, g′′(x) = 1
θ

(
1
θ − 1

)
x

1
θ −2, is a decreasing function of x, so m

bc
− m

ac
>

m
ce
−m

cd
. This inequality can be rearranged to get m

bc
+m

cd
> m

ac
+m

ce
or m

bd
> m

ae
. Therefore,

inequality (A.2) is reversed for µ > 1/2 and θ ∈ (
1/2, 1

)
.

Finally, inequality (A.2) holds in the case µ < 1/2 and θ ∈ (
1/2, 1

)
, since the direction of the

inequality is reversed when µ < 1/2 and it is reversed again when θ ∈ (
1/2, 1

)
.

Lemma 4 The asset demand function q∗ (p
A
, πi, θ, w) in equation (1) is a decreasing function of

p
A

for all (π, θ, w) ∈ (0, 1) × (0,∞) × (0,∞).

Proof For θ ≤ 0 the proof is immediate from inspection of equation (2). For θ > 0, the slope of

the demand function with respect to p
A

is

∂q∗ (p
A
, πi, θ, w)

∂p
A

=
−(1 − p)

2
θ π

2
θ + −1+2θp−2θp2

θp(1−p) p
1
θ (1 − p)

1
θ π

1
θ (1 − π)

1
θ − p

2
θ (1 − π)

2
θ(

(1 − p)p
1
θ (1 − π)

1
θ + p(1 − p)

1
θ π

1
θ

)2

=
−(1 − p)

2
θ π

2
θ +

(
2 − 1

θp(1−p)

)
p

1
θ (1 − p)

1
θ π

1
θ (1 − π)

1
θ − p

2
θ (1 − π)

2
θ(

(1 − p)p
1
θ (1 − π)

1
θ + p(1 − p)

1
θ π

1
θ

)2

=
−

(
(1 − p)

1
θ π

1
θ − p

1
θ (1 − π)

1
θ

)2

− 1
θp(1−p) p

1
θ (1 − p)

1
θ π

1
θ (1 − π)

1
θ(

(1 − p)p
1
θ (1 − π)

1
θ + p(1 − p)

1
θ π

1
θ

)2 .

This slope is negative for all p ∈ (0, 1) and θ > 0.



Let v be the share of the vote attained by candidate A. Assume that v ∈ {0, 0.001, 0.002, . . . , 0.999, 1}.

Let mi be the number of units of asset A held by agent i, and let ni be the number of units of asset

B held by agent i.

In state v the final wealth level of agent i is wi + mi v − mi p + ni (1 − v) − ni (1 − p). This can be

written wi + mi (v − p) − ni (v − p) or wi + (mi − ni) (v − p).

Let qi = mi −ni. Then agent i will hold only asset A or asset B, and qi represents the asset holding

of both A and B.

Beliefs with a discrete density

Let π
(i)
v be the subjective probability of agent i that candidate A will obtain the vote share v.

The expected utility of agent i is 1
1−θ

∑N
v=0 (wi + qi (v/N − p))1−θπ

(i)
v .

Note that if N = 1 then this reduces to the decision problem in the winner-take-all market.

The first-order condition is
∑N

v=0 ( v
N − p) (wi + qi ( v

N − p))−θπ
(i)
v = 0.

Beliefs with a continuous density

Let v be the share of the vote attained by candidate A. Assume that v ∈ (0, 1).

Assume that the density function for agent i isfi(v) for v ∈ (0, 1).

The expected utility of agent i is 1
1−θ

∫ 1

0
(wi + qi (v − p))1−θ fi(v) dv.

The first-order condition is
∫ 1

0
(v − p) (wi + qi (v − p))−θ fi(v) dv = 0. Let x = wi + qi (v − p). Then

q−1
i dx = dv and v−p = (x−wi)/qi. When v = 0, x = wi − qi p and when v = 1, x = wi + qi (1−p).

From this change of variables the first-order condition can be written

∫ wi+qi (1−p)

wi−qi p

(x − wi)
q2
i xθ

fi

(
x−wi

qi
+ p

)
dx = 0.


