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ABSTRACT 
For some applications, prediction markets that rely entirely on 
voluntary transactions between individual participants may 
provide insufficient liquidity to aggregate information 
effectively, especially where the number of participants is small. 
A solution to this problem is to rely on an automated market 
maker, which allows participants to buy from or sell to the 
house. Robin Hanson has described a class of automated market 
makers called market scoring rules. This Article examines a 
member of this class that has received little attention, the 
quadratic market scoring rule. Its prime virtue is that it provides 
uniform liquidity across the probability or prediction spectrum. 
Market participants will thus have the same incentive to do 
research that is expected to produce an expected change in the 
market prediction, regardless of the current prediction. Formulas 
are provided for implementing the quadratic market scoring 
rule, as well as variations, for example to implement conditional 
markets. 
 

1. INTRODUCTION 
 

Classically, prediction markets depend entirely on the 
willingness of market participants to enter into trades with one 
another. Web sites like Tradesports and the Iowa Electronic 
Markets operate on the principle of a “continuous double 
auction.” Traders enter the prices at which they are willing to 
purchase or sell shares. Orders are matched where possible, or 
else put on “bid” and “ask” queues. The market prediction can 
be obtained by considering either the most recent price or the 
midpoint of the bid-ask spread. A limitation of this approach is 
that in some markets, bid-ask spreads can be very large. This 
may be because potential traders are worried that trading 
partners may have inside information, or simply because there is 
limited interest in trading. In any event, in these circumstances, 
classically structured prediction markets do not produce 
accurate point estimates of probabilities. 
 Because of this liquidity problem, there has been 
substantial interest in developing alternative market structures. 
Maxwell and Burns (1996) explains how to create a virtual 
specialist that adjusts market prices by identifying imbalances in 
pending buy and sell orders, while Abramowicz (1999) would 
require the most recent trader in effect to become a specialist at 

a price determined by the seller. In the past few years, two 
alternative classes of mechanisms have been developed with the 
virtue that mathematical formulas can calculate the price 
entirely on the basis of past transactions. First, Hanson (2003) 
has described a “market scoring rule,” and Hanson (2006) 
particularly emphasizes the virtues of one version of this 
approach, the logarithmic market scoring rule. The logarithmic 
approach has now been widely adopted, for example by 
Microsoft for its internal markets and by Inkling Markets, a 
provider of prediction market software on the web. Second, 
Pennock (2004) describes a variation on pari-mutuel betting, 
called the dynamic pari-mutuel market. Yahoo!, Pennock’s 
employer, uses this approach in its Tech Buzz market. 

In this article, I will argue that while both the 
logarithmic scoring rule and the dynamic pari-mutuel market 
have uses in particular contexts, a different form of the market 
scoring rule, the quadratic market scoring rule, is better suited to 
serve as a foundation for many prediction market applications. 
The central point is that with the quadratic market scoring rule, 
the profit that a user can make by improving a prediction is 
constant across the probability spectrum (or, for 
nonprobabilistic estimates, the prediction spectrum), and so the 
subsidy is constant as well. The quadratic market scoring rule is 
thus equivalent to what I call a “uniform liquidity automated 
market maker.” Given the relatively small subsidies for 
prediction markets to date, what predictive improvements a 
subsidy rewards may not be so important, but the issue should 
have greater importance in potential future markets with greater 
subsidies, such as markets designed to provide information to 
corporations or governments. 

Even if uniform liquidity is not desirable, the 
approach can be easily modified to allow for subsidy 
variability—either for different portions of the probability or 
prediction spectrum, or across time—in any way specified by 
the market administrator. Creators of subsidized markets should 
be considering directly how to distribute market subsidies, 
rather than relying implicitly on the default approach of the 
logarithmic market scoring rule (though at times, a logarithmic 
distribution may be exactly what is appropriate for the decision 
task) or the dynamic pari-mutuel market. In addition, the 
approach that I describe lends itself to a simple user interface 
that even those who do not understand markets should be able 



easily to understand, and the quadratic market scoring rule can 
be easily adapted to make nonprobabilistic predictions.  
 

2. ROBIN HANSON’S MARKET SCORING 
RULE 
 Hanson’s market scoring rules are built on a statistics 
literature on “scoring rules,” of which DeGroot and Fienberg 
(1983) provide a useful overview. A scoring rule is simply a 
formula used to provide an incentive for a predictor to make an 
accurate prediction, where more accurate predictions generally 
earn greater amounts of money. “Strictly proper” scoring rules 
are scoring rules that should induce risk-neutral actors to make 
honest probabilistic assessments, by providing them maximum 
expected payoffs from announcing accurate probabilistic beliefs.  
 The market scoring rule adapts scoring rules to a 
context in which individuals make successive predictions. It 
reflects two clever insights. The first insight is that instead of 
paying each of the predictors according to the scoring rule, the 
market sponsor can pay each predictor according to the amount 
by which the predictor improves on the prediction. That is, each 
predictor receives the payoff according to the scoring rule 
applied to the predictor’s own prediction, reduced by the payoff 
according to the scoring rule applied to the previous prediction. 
In effect, any new predictor can come along and make a new 
prediction, receiving a payout in the form of a scoring rule, as 
long as this predictor is willing to pay off the previous predictor 
according to the same scoring rule. 
 So far, this may not seem to have anything to do with 
prediction markets as classically defined. Hanson’s second 
clever insight, however, was that for each market scoring rule, 
an automated market maker can be constructed that in effect 
implements the scoring rule. Based on the number of shares for 
each contingency being forecast, a formula can be used to 
calculate a price, which can be understood as a forecast if the 
scoring rule is strictly proper. The automated market maker will 
sell an infinitesimal share at this price. Each infinitesimal 
purchase raises the price, but with calculus, it is possible to 
derive formulas indicating for any given amount of money, how 
many shares can be purchased, and what the new price of the 
share will be afterward.  

The underlying dynamics are precisely the same as 
with the market scoring rule in the absence of a market. When 
all is said and done, a trader’s profit in a market using this 
automated market maker will be exactly the same as if the trader 
received payment under the market scoring rule based on the 
new price and in turn paid off the prior trader based on the old 
price. The correspondence, however, may not be intuitively 
obvious to traders. The amount that a user has to pay up front is 
not the prior trader’s payoff under the market scoring rule – that 
amount will not be determined until the market closes. Instead, 
it is a price equal to the amount that the user will lose if the 
event corresponding to the shares purchased does not occur. The 
amount that the user eventually receives if the event occurs is 
not the payoff under the scoring rule, but, as in classically 
structured prediction markets, some fixed amount (such as $1 
per share). 
 These insights alone would have provided for a major 
improvement in prediction market technology from Hanson, the 

inventor of the classical prediction markets trading structure. 
But Hanson had another critical insight, that the market scoring 
rule could be used as the basis for a “combinatorial” market. In 
a combinatorial market, participants can trade not only on 
whether any particular event will occur, but also on whether a 
particular event will occur contingent on another event. The 
number of possible contingencies that individuals might like to 
trade on increases exponentially in the number of events, and 
past some point may become computationally unmanageable 
with current computers, but Hanson showed at least how an 
automated market maker could manage trading on all possible 
combinations for a relatively small number of events. 
 Ideally, in a combinatorial market, trading on the 
probability of A given B shouldn’t result in a change in the 
probability of B, or a change in the probability of C given A. 
Hanson proved that this independence could be achieved with 
only one form of the market scoring rule, the logarithmic market 
scoring rule. Given this observation, it is not surprising that the 
logarithmic market scoring rule has been so widely adopted. 
Hanson provided a formula for the price function for the 
logarithmic market scoring rule, and Pennock (2006) has 
published the cost function as well. Meanwhile, Pennock 
concluded that the market scoring rule corresponding to the 
quadratic scoring rule “is not very interesting or useful in 
practice.” 

Apparently, Pennock came to this conclusion because 
he calculated a cost function for the quadratic market scoring 
rule based on a single market that could handle any number of 
contingencies.1 Such an approach works well with the 
logarithmic market scoring rule. With this approach applied to 
the quadratic market scoring rule, however, as soon as one 
security reaches its upper limit, the market maker cannot allow 
purchases of other securities to drive down the other prices, 
because otherwise the probabilities corresponding to the various 
securities would add up to more than 1. As we will see, 
however, there is a simple solution to this problem. Where there 
are two possible events, the automated market maker can sell 
two different types of contracts implementing opposite quadratic 
market scoring rules to derive a single market price. For more 
than two events, additional markets can be deployed, with 
minimal additional computational complexity, and a subsidy 
intended for the predictive task can be divided among them.  

But it may seem that there is relatively little reason to 
use a quadratic market scoring rule when the logarithmic market 
scoring rule already exists. In fact, however, the logarithmic 
scoring rule has a serious disadvantage for many applications. 
The amount of subsidy that a user receives for making a 
correction to a probability assessment varies dramatically across 
the probability spectrum, particularly near the ends of the 
spectrum. It can be shown, for example, that the amount of 
money that a user can expect from correcting a prediction from 
0.10 to 0.11 (assuming that 0.11 is in fact correct) is only 13.8% 
as much as from correcting 0.01 to 0.02 (assuming that 0.02 is 
in fact correct).2 Equivalently, with the automated market 

                                                                 
1 This is explained in an unpublished paper by Pennock, Yiling 

Chen, and Mike Dooley. 
2 This 13.8% figure can be calculated as follows: 

((.11*ln(.11)+(1-.11)*ln(1-.11)) – (.11*ln(.10)+(1-.11)*ln(1-



maker, a user will purchase far more shares in moving the price 
from 0.01 to 0.02 than in moving the price from 0.10 to 0.11. 
Because the logarithmic scoring rule provides infinite liquidity 
near the ends of the probability spectrum (although not infinite 
profit potential), trading can never move a probability all the 
way to 0 or 1, even if the event being predicted has already 
occurred (but the market administrator has not terminated the 
market).  

There may be situations in which it makes sense to 
have very high subsidies for trading near zero. Suppose, for 
example, that one were using a prediction market to assess the 
chance of a relatively low probability catastrophic, event. It 
might make a big difference for policy response whether the 
event has 0.001 or 0.002 probability, and it might be sensible to 
provide as great a subsidy for correcting a prediction from one 
level to the other as from, say, 0.01 to 0.02.  

But there are many prediction markets for which this 
is not the case – it doesn’t much matter just how outrageously 
low the Boston Celtics’ chance of winning the NBA 
Championship are right now. Yet, using the logarithmic scoring 
rule to predict the NBA Champion would provide risk-neutral 
participants a relatively large incentive to work out those small 
numbers. The point is most obvious for prediction markets that 
are merely forecasting point estimates. (It is possible to use the 
logarithmic scoring rule to motivate forecasters to estimate an 
entire probability distribution, but for some applications, all the 
market sponsor really cares about is the mean of that 
distribution, and requiring each forecaster to enter an entire 
probability distribution is overkill.) Perhaps we would like to 
use a prediction market to forecast simply how many games the 
Celtics will win this year. In that case, we would likely want the 
same subsidy for each per game marginal improvement in the 
forecast.  

Even where it may make sense to devote a relatively 
large portion of a market subsidy to the bottom of the 
probability spectrum, it might be desirable to allow the market 
administrator to specify just how the subsidy should be for each 
part of the probability spectrum. Suppose, for example, that 
Corporation A creates a prediction market to determine whether 
Corporation B will release a product competing with an offering 
from Corporation A. It may be that it will be worth it for 
Corporation A to respond (e.g., by accelerating its own project) 
if the probability is greater than 0.10, but that Corporation A 
will not respond at all for lower probabilities and will not 
augment its response for much higher probabilities. In that case, 
it makes sense to have the most liquidity in the direct vicinity of 
the 0.10 probability, not on the ends of the probability spectrum.  

 
3. A UNIFORM LIQUIDITY AUTOMATED 
MARKET MAKER 

This section describes a different automated market 
maker, one that provides uniform liquidity across the probability 
spectrum. Section 3.1 derives formulas for this market maker by 
conceptualizing this market maker as one that sells two kinds of 
                                                                                                        

.10))) / ((.02*ln(.02)+(1-.02)*ln(1-.02)) – (.02*ln(.01)+(1-

.02)*ln(1-.01))). 

shares, “high” and “low,” and places an “ask” offer for one kind 
or the other at every price along the probability spectrum. 
Section 3.2 derives formulas for the quadratic market scoring 
rule, and shows that it is equivalent. Some readers will merely 
be interested in the formulas provided in Table 1 below, but I 
provide the two derivations to explain how I obtained them and 
to emphasize the equivalence of the two approaches.3 
3.1 The Uniform Automated Offers 
Approach 
 Suppose that we are making prediction of an event 
that will produce a number pfinal, which may range from pmin to 
pmax. (In the event of a binary prediction, pfinal = 0 if the event 
does not occur and pfinal = 1 if it does, so pmin = 0 and pmax = 1.) 
Let the current prediction be equal to pcurrent (initially set to 
some default value pdefault), and at all times, let pcurrent* = (pcurrent 
– pmin) / (pmax – pmin), and let pfinal* = (pfinal – pmin) / (pmax – pmin). 
The market maker is available at any time to sell at every price 
an infinitesimal number of shares whose maximum possible 
value is v. For prices above pcurrent*, the market maker will sell 
an infinitesimal share for v*pcurrent* that will pay off v*pfinal*, and 
for prices below pcurrent, the market maker will sell an 
infinitesimal share for v*(1 – pcurrent*) that will pay off v*(1 – 
pfinal*).  
 Let d equal the total number of shares that a user 
would need to purchase to move the price from pmin to pmax. 
Now suppose that a participant wishes to change the price from 
pcurrent to pnew, where pnew > pcurrent. We let pnew* = (pnew – pmin) / 
(pmax – pmin). Because the automated market maker’s ask offers 
are uniformly distributed, the average price of a share in 
changing the prediction will be v*(pcurrent* + pnew*)/2. The 
number of shares purchased q = d*(pnew* – pcurrent*). So, the total 
cost c = (v*(pcurrent* + pnew*)/2)*d*(pnew* – pcurrent*) = (p2

new* – 
p2

current*)*dv/2.  
We can now calculate the maximum subsidy s, which 

equals the maximum gain for traders if the market were to start 
at a default value of pmin, and trading closed at pmax = pfinal, or 
vice versa. If pcurrent* = 0 and pnew* = pfinal* = 1, then c = dv/2, 
with a payoff w (for “winnings”) of dv, and thus the subsidy s = 
dv – dv/2 = dv/2.  

We continue to assume that a participant wishes to 
change the price from pcurrent to pnew, where pnew > pcurrent. 
Substituting into the equations above, c = s(p2

new* – p2
current*), and 

the ultimate payout w equals 2s*pfinal** (pnew* – pcurrent*). Profit π 
= w – c = s*(2* pfinal** (pnew* – pcurrent*) – (p2

new* – p2
current*)). It 

can similarly be shown that if a participant wishes to change the 
price from pcurrent to pnew, where pnew < pcurrent, c = s((1 – 
pcurrent*)2 – (1 – pnew*)2), and w = 2s*(1 – pfinal*)*(pcurrent* – pnew*). 
Note that these equations do not include d or v; simply 
specifying a maximum subsidy s is sufficient to calculate all 
variables that are needed to determine costs and payoffs. 

The relevant formulas are summarized in Table 1. 
 

                                                                 
3 I am grateful to Robin Hanson for pointing out, when I 

described the uniform liquidity automated market maker, that 
there must be some version of the market scoring rule to 
which it would be equivalent. 



Table 1. Formulas for Implementing the Uniform Liquidity 
Automated Market Maker 
Initial state variables 
pmin The minimum possible 

outcome 
Given 

pmax The maximum possible 
outcome 

Given 

s The maximum possible 
subsidy 

Given 

v The maximum possible payoff 
of a share 

Given 

pdefault The default prediction Given 
pcurrent The current prediction At beginning of market: 

pdefault 
After new prediction is 
processed: pnew 

d The density, or the total 
number of shares that a 
forecaster would need to 
purchase to move the 
prediction from pmin to pmax 

2s/v 

pcurrent* The scaled current prediction (pcurrent – pmin) / (pmax – pmin) 
Variables realized after occurrence of event 
pfinal The final result of the event (for 

a binary event, 0 if the event 
does not occur and 1 if it does 
occur) 

Determined by the ultimate 
event, or by the market 
sponsor as a result of the 
early termination of the 
market 

pfinal* The scaled final result (pfinal – pmin) / (pmax – pmin) 
If predictor wishes to set a new prediction higher than the current 
prediction 
pnew The new prediction; must 

confirm that pmin <= pnew* <= 
pmax. 

Given by predictor 

pnew* The scaled new prediction (pnew – pmin) / (pmax – pmin) 
c The cost to the predictor (or, 

equivalently, the maximum 
loss that the predictor faces) 

s(p2new* – p2current*) 

q The number of “high” shares 
received by the predictor 

(2s/v) * (pnew* – pcurrent*) 

w The predictor’s gross winnings, 
i.e. the payoff that the predictor 
receives after occurrence of 
the event 

2s*pfinal** (pnew* – pcurrent*). 

π The predictor’s net winnings or 
profit 

w – c 

If predictor wishes to set a new prediction lower than the current 
prediction 
pnew The new prediction; must 

confirm that pmin <= pnew* <= 
pmax. 

Given by predictor 

pnew* The scaled new prediction (pnew – pmin) / (pmax – pmin) 
c The cost to the predictor (or, 

equivalently, the maximum 
loss that the predictor faces) 

s((1 – pnew*)2 – (1 – 
pcurrent*)2) 

q The number of “low” shares 
received by the predictor 

(2s/v) * (pcurrent* – pnew*) 

w The predictor’s gross winnings, 
i.e. the payoff that the predictor 
receives after occurrence of 
the event 

2s*(1 – pfinal*)*(pcurrent* – 
pnew*). 

π The predictor’s net winnings or 
profit 

w – c 

If predictor wishes to purchase “high” shares for a given cost 
c The cost to the predictor (or, 

equivalently, the maximum 
loss that the predictor faces) 

Given by predictor 

pnew* The scaled new prediction; 
must confirm that pmin <= pnew* 

<= pmax. 

sqrt(p2current* + (c /s)) 

pnew The new prediction (from 
which other variables can be 
calculated, as above) 

pmin + pnew* * (pmax – pmin) 

If predictor wishes to purchase “low” shares for a given cost 
c The cost to the predictor (or, 

equivalently, the maximum 
loss that the predictor faces) 

Given by the predictor 

pnew* The scaled new prediction; 
must confirm that pmin <= pnew* 

<= pmax. 

1 – sqrt((1- pcurrent*)2 + (c 
/s)) 

pnew The new prediction (from 
which other variables can be 
calculated, as above) 

pmin + pnew* * (pmax – pmin) 

If predictor wishes to purchase a particular number of “high” shares 
q The number of “high” shares 

purchased by the predictor 
Given by predictor 

pnew* The scaled new prediction; 
must confirm that pmin <= pnew* 

<= pmax. 

pcurrent* + q/d 

pnew The new prediction (from 
which other variables can be 
calculated, as above) 

pmin + pnew* * (pmax – pmin) 

If predictor wishes to purchase a particular number of “low” shares 
q The number of “low” shares 

purchased by the predictor 
Given by the predictor 

pnew* The scaled new prediction; 
must confirm that pmin <= pnew* 

<= pmax. 

pcurrent* – q/d 

pnew The new prediction (from 
which other variables can be 
calculated, as above) 

pmin + pnew* * (pmax – pmin) 

 

3.2 The Quadratic Market Scoring Rule 
Approach 
 It is straightforward to derive the same formulas using 
a quadratic market scoring rule. The quadratic scoring rule is 
defined as follows (Murphy and Winkler 1970): Assume that the 
forecaster announces a probability distribution p=(p1,…,pn), i.e. 
announces pi, 1 <= i <= n, for each of n events, where Σpi = 1. If 
the event that occurs is j, the forecaster’s payoff Qj(p) = a + 2b * 
pj – b * Σ(pi)2.  

Let n = 2 and let p1 correspond to the probability that 
the event occurs. Then, if the event does occur, the forecaster 
receives payout Q1(p) = a + 2b * p1 – b*(4 p1 – 2 p1

2  – 1), and if 



the event does not occur, the payout is Q2(p) = a + b(1 – 2 p1
2 ). 

Note that a and b represent arbitrary constants. 
Assume as before that the prior forecaster has 

announced p1 = pcurrent*, and the new forecaster has announced 
p1 = pnew*, where pnew* > pcurrent*. The cost for the new forecaster 
is the maximum possible loss, which is the loss in the event that 
the event does not occur. Thus, c = Q2(pcurrent*) – Q2(pnew*) = 
2b(p2

new* – p2
current*). Similarly, the profit for the new forecaster is 

the gain if the event does occur, where pnew* > pcurrent*. It follow 
that π = Q1(pnew*) – Q1(pcurrent*) = 2b*(2(pnew* – pcurrent*) – (p2

new* 
– p2

current*)). 
It is apparent that this is a special case of the formulas 

above, where pfinal* = 1 and s = 2b. It is straightforward to show 
a similar equivalence where pnew* < pcurrent*.  

 
4. EXTENSIONS 
 This part explains how to extend the uniform liquidity 
market maker. Section 4.1 explains how the subsidy can be 
varied over the probability or prediction spectrum, as well as 
over time. Section 4.2, meanwhile, explains how the uniform 
liquidity market maker can be used when making probabilistic 
predictions and there are more than two mutually exclusive 
outcomes. Section 4.3 explains how the market maker can be 
run over multiple rounds to create a “deliberative market,” and 
Section 4.4 shows how the deliberative market design makes it 
straightforward to implement conditional markets. 

 
4.1 Variable Subsidy 
 As noted above, the uniform liquidity automated 
market maker provides an equal incentive for a marginal 
prediction improvement anywhere along the probability or 
prediction spectrum. For many applications, this will be what is 
desired, but there may be some situations when it is not. 
Suppose, for example, that a software company is deciding 
whether to create a new version of its software program, and 
that decision will depend in part on the sales of the current 
version of the software program. If the expected sales of the 
current version are below some low threshold, it definitely will 
not be worth creating a new version, and if the expected sales 
are above some high threshold, it definitely will be worth 
creating a new version. If the company is creating a prediction 
market to forecast sales of the current version, and needs the 
result only because it will help determine whether to make a 
new version of the software, it might not make much sense to 
provide a large subsidy below the low threshold or above the 
high threshold. Once it is clear that the actual number will not 
be between the thresholds, the precise value does not much 
matter. 
 Meanwhile, it also often does not make sense to 
provide the same subsidy over time. In particular, it will often 
be sensible to provide a lower subsidy at the very beginning of 
the market, and to raise this subsidy to the maximum level 
afterward. The reason for this is that there may be a number of 
predictors who can provide a rough approximation of a 
prediction very cheaply, and so a small subsidy will be enough 
to induce some predictor to make this approximation if it is 

thought that otherwise some other predictor will do so. The 
market sponsor, however, ultimately may want greater accuracy 
eventually, and so the subsidy can rise, inducing greater levels 
of research by predictors. (Of course, a predictor might do 
research in advance but then wait to trade on it until the subsidy 
is sufficiently high.) In many contexts, the subsidy can be set to 
reach its maximum level quite quickly. A trader might attempt 
to manipulate a market by seeking, for example, to buy high 
shares when the subsidy is low and then buying low shares 
when the subsidy is high. This strategy, however, will not be 
profitable, however, if other traders push the price back to its 
initial level when the subsidy is still low. 
 One virtue of the dynamic pari-mutuel market is that 
the profit from betting will generally rise over time in this way. 
The greater the number of bets that have been placed in the 
dynamic pari-mutuel market, the greater the liquidity. But if a 
dynamic pari-mutuel market is subsidized by the placement of 
“seed wagers” at the beginning of the market, much of the 
subsidy will effectively be distributed at the start of the market. 
At the least, it is not easy to figure out how the dynamic pari-
mutuel market can be modified so that a given level of subsidy 
can be provided at a particular time, let alone for different 
portions of the probability spectrum.  
 Table 2 shows how to implement a general automated 
market maker on top of the uniform automated market maker. It 
introduces various new variables representing the relative 
subsidy to be given over the probability spectrum and over time. 
In contrast to Table 1, the maximum possible subsidy is now 
represented by the variable σ, and the variable s now represents 
an adjusted subsidy variable. Once calculated, this s variable 
can be used wherever s appears in Table 1 to calculate various 
other variables based on a new prediction specified by the 
predictor. Unfortunately, there is no simple formula for 
determining the new prediction based on a cost or number of 
shares input by a predictor. If this is desired, however, it can be 
straightforwardly calculated by creating a two-dimensional 
array of possible new predictions and the corresponding costs. 
 

 
 
Table 2. Formulas for a General Automated Market Maker 
New variables and the calculation of the adjusted subsidy measure 
f(p) The subsidy weight for a 

marginal change to a given 
prediction p 

Given for all p between 
pmin and pmax, where 0 <= 
f(p) for all p. 

F(p) The cumulative density 
function for f(p) 

Can be calculated from 
f(p). Note that F(pmin) = 0, 
and where pmin + ε <= p <= 
pmax, F(p) ≈ F(p-ε) + εf(p). 

fmean(a,b) The average value of f(p) from 
a to b 

(F(b) – F(a))/(b-a) 

g(t) The subsidy weight at time t, 
where 0 <= g(t) <= 1 for all t. 

Given 

t The time at which the current 
transaction takes place 

Given 

σ The maximum possible 
subsidy 

Given 



s Adjusted subsidy variable σ * g(t) * fmean (pcurrent, pnew) 
/ fmean(pmin, pmax) 

 
 There may be some circumstances in which it makes 
sense to change the relative subsidy levels based on variables 
such as the current price or the current time. Consider, for 
example, a prediction market being used to predict the outcome 
of a sports contest. The sponsor of the market might want new 
predictions to be announced during the event, but might not 
want to offer larger subsidies closer to the current prediction 
level. Otherwise, there will be a particularly large award for 
whichever predictor happens to respond to a major event in the 
contest by entering a new prediction the fastest. This 
modification should be straightforward to implement by 
changing the subsidy distribution f(p) over time. Note that the 
distribution should be centered around the price with a short 
time lag, lest users be able to capture the full subsidy by rapidly 
entering numerous incremental predictions. This approach limits 
the ability of any market participant to receive a large subsidy 
simply for acting first on news available to all participants. 
 

 
4.2 More Than Two Mutually Exclusive 
Events 
 The above analysis makes it straightforward to 
forecast either a continuous variable or a binary variable, that is 
to predict whether a single event A1 will or will not occur. If 
either A1 will occur or A2 will occur, then the approach above 
can be used simply to forecast A1, since A2 = 1 – A1. A user 
interface straightforwardly can allow a user to consider the 
market from either perspectives (as, for example, NewsFutures 
does). Equivalently, however, one could run two markets, 
allowing the automated market maker to sell “low” and “high” 
shares in both A1 and A2. A user could maximize profit from a 
given correction to the relevant probabilities by trading on both 
markets, and arbitrageurs should generally ensure that the 
market prices add up to unity. A simpler strategy, however, is to 
have any trading in A1 or A2 automatically result in trading in A1 
and A2. So, for example, when a user requests to make a 
purchase that will change the prediction of A1 from 0.30 to 0.31, 
the system reports the cost of changing the prediction of A1 from 
0.30 to 0.31 (by buying “high” shares in A1), plus the cost of 
changing the prediction of A2 from 0.70 to 0.69 (by buying 
“low” shares in A2). The system would, of course, report the 
exact same price if the user requests to make a purchase that 
will change the prediction of A2 from 0.70 to 0.69. The subsidy 
for each of these two markets could be set to half of the original 
intended maximum subsidy. 
 Of course, this modest added complexity has little 
value when there are only two mutually exclusive events to be 
forecast, but it can be quite valuable when there are three or 
more. From a user interface perspective, the user can enter new 
probabilities for each (or for all but one) event, or alternatively, 
the user can simply change one probability, and the system can 
calculate the probabilities to which the user is setting the other 
events. A simple approach is by default to change the other 
predictions proportionately so that all of the predictions 

continue to add up to 1, and to report the price for conducting all 
of the transactions simultaneously. (A useful user interface 
feature might allow the user to move sliders for any one event, 
with the sliders for all other events moving responsively.) So, let 
pcurrent*(i) and pnew*(i) represent the current and new predictions 
for some event i, 1 <= i <= n, where n is the total number of 
mutually exclusive events. Then, for each j, 1 <= j <= n, where i 
≠ j, pnew*(j) = pcurrent*(j) + (pcurrent*(i) – pnew*(i)) * pcurrent*(j) / (1 – 
pcurrent*(i)). 
 Two technical details: First, if the maximum total 
subsidy is t, then the maximum subsidy σ corresponding to the 
market for each mutually exclusive possibility should be set to 
t/2. This is true regardless of the number of mutually exclusive 
events. Second, there is no simple formula for determining the 
new prediction based on a cost or number of shares input by a 
predictor. Once again, however, if this is desired, it can be 
straightforwardly calculated by creating a two-dimensional 
array of possible new predictions and the corresponding costs, 
and interpolating between them.  
 

4.3 Deliberative markets 
 Abramowicz (2006) described the operation of a 
deliberative prediction market. In such a market, a participant’s 
performance depends not just on ultimately being proved right 
by the event being predicted, but on actually succeeding in 
moving the market along some potentially smaller interval. To 
succeed in such a market, a trader must convince other market 
participants that one is correct. 
 This approach is straightforward to implement in 
conjunction with the market design described here. The system 
must pay off shares held by predictors at some time after the 
prediction is made, but potentially before the event occurs. The 
exact amount of time is randomized to prevent manipulation. 
Suppose that the prediction is made at time t. Then, the system 
calculates a reimbursement time of tfinal= tmin – h * ln(rand()) / 
ln(2), where tmin is a minimum amount of time, h is the half life 
after this minimum is reached, ln() is the natural logarithm 
function, and rand() is a pseudo-random number generator 
producing a floating point number uniformly distributed 
between 0 and 1. At time tfinal, the shares for the predictor are 
paid off by setting pfinal for that predictor only to pcurrent. Of 
course, if the event actually occurs, all remaining shares are paid 
off based on pfinal. 

Two technical points: First, the subsidy s in Table 1 is 
no longer the maximum theoretically possible subsidy. Second, 
h should be set to an amount of time long enough so that if 
someone did try to manipulate the market, others with high 
probability would successfully counter such manipulation. It 
may often make sense for h to fall closer to the conclusion of an 
event. For example, more traders are likely to be sitting by their 
computers looking at market prices during the fourth quarter of 
a basketball game being forecast than hours before, and so h 
might be as short as, say, a minute. 

The deliberative market approach may work 
effectively even where producing deliberation is not a goal of 
the market. One problem with traditional prediction market 
designs is that predictors’ money is unavailable when a market 
is running. This is particularly problematic where a market may 



not resolve itself for many years. Although there are some 
possible solutions—such as investing money in a mutual fund—
making tmin and h relatively short is a simple one.  

Note that market participants will still have incentives 
to forecast the ultimate event because they will recognize that 
predictors just before the event occurs will have such incentives, 
and that predictors just before that will have an incentive to 
anticipate the predictions of later predictors, and so forth. This 
may seem attenuated, but it is in fact no different from many 
security markets where the payoff will not occur for a long time. 
Even if each individual trader expects to be in the market only a 
short period of time, the market fundamentals depend on the 
eventual event. 
 

4.4 Conditional Markets 
 The most significant disadvantage of the quadratic 
market scoring rule, as well as of the variations described here, 
is that it is not well suited to combinatorial markets. With a 
combinatorial market, a single subsidy can be allocated 
automatically to subsidize all possible combinations of events. 
But conditional markets can still be used to make discrete 
conditional probability forecasts. Suppose, for example, that 
prediction markets are used to forecast whether each of 12 
battleground states will vote Democratic or Republican in the 
next Presidential election. A combinatorial market would 
effectively allow trading on all permutations and combinations, 
including for example the probability that Florida will go 
Democratic if Ohio and New Mexico go Republican, and it 
would ensure that the market results are consistent. Conditional 
prediction markets, meanwhile, can be used to make any 
particular conditional evaluation specified by the market 
sponsor, but there is no mechanism for providing automatic 
consistency among large number of markets. Such conditional 
markets will satisfy the needs of many, though perhaps not all, 
potential market sponsors. 
 One way to implement conditional markets is to 
simply run markets on different possibilities. For example, one 
might create a market on whether the Republican candidate will 
win both the Presidency and Florida, as well as a market on 
whether the Republican will win Florida. The probability of the 
first divided by the probability of the second provides an 
estimate of the probability that the Republican will win the 
Presidency contingent on the Republican winning Florida. 
Mathematically, this approach is straightforward, and the user 
interface could present the user with the derived conditional 
prediction.  

A predictor could correct misaligned conditional 
probabilities by placing bets on both markets. For example, 
suppose that a predictor believes that the market is 
underestimating the probability that the Republican will win the 
Presidency contingent on the Republican winning Florida. 
Suppose, though, that the predictor has no idea which of the two 
markets is misaligned. Then, the predictor could purchase shares 
in the “both” security, and sell short shares in the Florida 
security. If done in just the appropriate proportions, the 
predictor will end up with no gains or losses if in fact the 
Republican does not win in Florida. So, the predictor is truly 
making a conditional assessment. A drawback, however, is that 

the predictor will have tied up money for potentially the full 
duration of the market, and that may be undesirable, especially 
if the condition is unlikely.  

An alternative way to implement conditional markets 
with the quadratic market scoring rule and other automated 
market makers is to unwind a market if the condition is not met. 
For example, a single prediction market can be maintained that 
forecasts whether the Republican will win the Presidency if 
Florida votes Republican. If Florida does not vote Republican, 
any money charged for shares is refunded, so traders will 
assume that Florida in fact will vote Republican for the purposes 
of this market. This approach, however, has the same drawback 
as before, that individuals will often not want to tie up their 
money for long periods of time, especially for unlikely 
contingencies. 

The deliberative market structure described above, 
however, largely overcomes this problem. As soon as it 
becomes apparent that the contingency will not be met, the 
market unwinds only those predictions that have not yet 
produced a payoff. If round times are sufficiently brief, traders 
can generally profit on predictions even when the contingency is 
not ultimately met. For example, if the minimum round time is a 
week and the half life is equal to a few hours, then a conditional 
prediction made in October will with very high probability be 
resolved by the election. 

The other advantage of this approach is consistent 
with the benefit of the general market maker discussed in this 
paper, that it makes it possible to target subsidies to the 
questions of greatest interest. A market sponsor might 
sometimes be interested in the probability of A conditional on B, 
but not otherwise interested in the probability of B. Creating 
markets in A&B and B effectively allocates a portion of the 
subsidy to users who can improve the market’s information on 
whether B will occur. By using the deliberative market structure 
and unwinding only once it becomes clear that a condition will 
not occur, the market sponsor is providing financial incentive 
only for research on A conditional on B. Of course, the market 
sponsor might be interested in subsidizing a market on B as 
well, but in that case can determine how great a subsidy to 
allocate to provide incentives for research on the probability of 
B. 

 

5. CONCLUSION 
 No experimentation is required to demonstrate that the 
quadratic market scoring rule should give market participants 
incentives to move prices toward the values they perceive as 
correct. Risk-averse participants might not move prices all the 
way to the values that they perceive as correct given all 
information (Sonnemans and Offerman 2001), but at least 
should move prices in the correct direction. Ideally, however, 
experimentation should be done to assess the degree to which 
the quadratic market scoring rule may improve on alternatives in 
providing greater subsidies for particular parts of the probability 
spectrum. It seems quite plausible that in lab experiments, many 
automated market makers will perform comparably, in part 
because it may take participants a long time to figure out how to 
optimize their research and prediction activities. The quadratic 
market scoring rule’s effects should be greatest in markets with 



very large subsidies, where participants will have sufficient 
incentives to tend to these details, but to date prediction market 
subsidies have been relatively small. 
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