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Abstract

Empirical studies have cast doubt on one of the bedrocks of applied economic model-
ing - the expected utility hypothesis. Economists have documented pricing anomalies,
like the long-shot bias in prediction markets (low probability events are priced too
high), that are inconsistent with representative agent models. In this paper, we show
that the inconsistency is due to the representative agent assumption, and not to the
expected utility hypothesis. When agents differ in their information sets and risk pref-
erences, we show that trader heterogeneity can easily explain the observed pattern of
price variation across betting and prediction markets. In particular, the long shot bias
is found to be due to a group of traders, whom we dub the “risk-averting grandmas”,
who make up about 40 percent of the trading group and bet on the top favorite in a
race in exchange for a premium. We show also that the expected utility hypothesis
outperforms the main “behavioral” alternatives, rank dependent expected utility, and
cumulative prospect theory.
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1 Introduction

A fundamental assumption about human behavior used in modern economic modelling is

the expected utility hypothesis (EUH). In its most basic form, the EUH is a hypothesis

about the nature of individual preferences for risky prospects, i.e., lotteries over monetary

outcomes. The EUH maintains that probability enters linearly into an economic agent’s

preference for risk, leading the agent to act so as to maximize his expected utility when

faced with a choice among lotteries. Thus the key device that expected utility theory uses

to explain an individual’s attitude towards risk is the utility function over wealth.

However, the empirical validity of the EUH has been subject to vigorous debate since

its inception (for a historical review, see e.g., Starmer (2000)). In particular, the assump-

tion that probability enters linearly into the calculus of comparing lotteries has been called

into question by a series of well documented experimental effects and examples.1 Outside

of the laboratory, the well known “favorite-longshot bias” in racetrack and betting markets

(Griffith, 1949; Thaler and Ziemba, 1988), which finds that betting on a horse more favored

to win by the market is more profitable on average than betting on a horse less favored,

was one the first phenomena to motivate the idea that people treat probability nonlinearly -

i.e., favorites appear undervalued by the market and longshots appear overvalued, suggest-

ing that people underweight large probabilities and overweight small probabilities. These

examples and numerous others like them2 have led to the development of a voluminous lit-

erature on “non-expected utility” theories (well over a dozen such theories exist, see e.g.,

Fishburn (1988)), which attempt to relax expected utility theory in ways that better fit the

experimental evidence.

1For example, experimental effects such as the “Allais paradox” (Segal, 1987), the common ratio effect,
and the preference reversal effect (Karni and Safra, 1987) have all been put forth as evidence that people
nonlinearly distort probabilities during decision making.

2A seminal work that experimentally uncovered many violations of expected utility theory in a systematic
way is Kahneman and Tversky (1979), which is today the second most cited paper in economics (Kim et al.,
2006).
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In this paper, we show how an emerging class of markets known as “prediction markets”

(Wolfers and Zitzewitz, 2004) can be used to examine the expected utility hypothesis against

real world market data. Examples of prediction markets include the odds market at horse

racetracks, as well as the more recent online exchanges such as Tradesports, Betfair, and the

Iowa Electronic Market. Simply put, these are markets that price uncertain events. Thus

for example, “Hilary Clinton wins the ’08 election” is an uncertain event, and by allowing

people to buy and sell an asset that pays 1 dollar in the event that she wins and zero dollars

otherwise, the market price of the asset puts a price on the event.

Economists (e.g., Plott et al. (2003); Manski (2006); Wolfers and Zitzewitz (2006)) have

recently become interested in the relationship between the price of an event in a prediction

market and the underlying probability that the event will occur (e.g., if the Hilary Clinton

asset has a price of .30 dollars, what is the relationship between .30 and her true chance of

success). The favorite longshot bias at horse racetracks reflects a particular price/probability

relationship - high priced horses (the favorites) are undervalued relative to their chance

of success, and low priced horses (longshots) are overvalued. Different price/probability

relationships have been discovered at racetracks in different countries

We develop a general equilibrium model of betting and prediction markets and show

that in equilibrium, the price/probability relationship is determined by the distribution of

risk attitudes in the betting population, i.e., by the pattern of equilibrium trade between

heterogeneous risk types. We then show how our general equilibrium model allows us to use

the actual price/probability relationship that is revealed by standard prediction market data

to both nonparametrically identify and structurally estimate the distribution of risk attitudes

among bettors. By comparing the structural estimates derived from different theories of

decision making under risk, we can explicitly test how well expected utility explains the

market data relative to the behavioral alternatives. Our analysis of the odds data from all

US racetracks over a three year period (2001-2003) finds that simple EU functional forms,
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such as CRRA and CARA preferences, do a very good job of explaining the price/probability

relationship observed in the data. The favorite longshot bias in particular is generated by

a natural exchange between risk lovers and risk averters : risk lovers overbet longshots in

order to finance the incentive for risk averters to bet on favorites. Moreover, we do not find

evidence for nonlinear probability behavior by bettors, contrary to the conclusions from the

experimental literature.

A key contribution of our empirical analysis is to show that by controlling for the het-

erogeneity of risk preferences, the expected utility hypothesis is capable of explaining away

apparent pricing anomalies, such as the favorite longshot bias, in a sensible way. In order

to explain the favorite longshot bias, the literature to date has relied upon a representative

bettor assumption. A representative bettor assumes that all bettors in the market have the

same preferences for risk. In equilibrium, the odds on each horse are such that the represen-

tative bettor is indifferent between betting on each horse in the race (since otherwise some

horses would receive no bets, which cannot happen in equilibrium).

Clearly, the favorite longshot bias is inconsistent with a risk neutral representative bettor,

since such a bettor would strictly prefer betting on the horse with the highest expected return

(which under the favorite longshot bias is the horse most favored to win). Thus in order to

neoclassicaly explain the favorite longshot bias with a representative bettor, this bettor must

be a risk loving expected utility maximizer, who is willing to accept the lower expected return

from betting on longshots because of the larger potential upside these bets offer (Weitzman,

1965).3

The few papers to date that test expected utility against market data (as opposed to

experimental data, where it is already well established that expected utility has failings) have

made fundamental use of the representative agent model. In the seminal paper to economet-

3In a similar result, (Quandt, 1986) shows that the favorite longshot bias is a necessary consequence of risk
loving, mean-variance expected utility maximizing behavior among bettors (not necessarily a representative
bettor).
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rically compare expected and non-expected utility (EU and non-EU) theories against race-

track odds, Jullien and Salanie (2000) find that a non-EU representative agent empirically

outperforms a risk loving EU representative agent. Using a different empirical methodology,

but maintaining the representative bettor model, Snowberg and Wolfers (2005) arrive at a

similar conclusion as to the empirical superiority of non-EU preferences in explaining the

pattern of prices at the racetrack. Thus these market studies point in the direction of re-

jecting expected utility theory, a fact that has been duly noted by the behavioral literature

Camerer (2000).

However, as we show, by allowing for risk averse bettors to enter the population and

trade with the risk loving bettors, the apparent superiority of non-EU preferences disappears.

Thus in the context of a richer general equilibrium model of market prices, expected utility

generates a much more sensible explanation of the market data.

A key step in both our theoretical and empirical analysis is observing that betting/prediction

markets are structurally identical to product differentiated markets of the kind that have

been extensively studied in the industrial organization literature. Essentially, the horses in a

race can be viewed as being “vertically” differentiated from one another by their probability

of winning, and bettors differ from one another by the their “willingness to pay for quality”,

i.e., their risk aversion. This connection between prediction markets and product differenti-

ated markets motivates our general equilibrium approach and empirical strategy, which we

now preview.

A Preview of the Model and Empirical Strategy

As already mentioned, betting and prediction markets come in a variety of popular forms,

ranging from the odds market at horse racetracks, to the more recent online exchanges

such as Tradesports and the Iowa Electronic Market. The common thread tying together

these markets is that they are single period, ex-ante markets for the trade of a complete

4



set of Arrow-Debreu securities. For simplicity, we shall use the language of “horse races” to

describe prediction markets more generally. Thus, consider a race with n horses running.

Betting on horse i to win is equivalent to buying an Arrow-Debreu security that pays off 1

dollar in the event horse i wins, and 0 dollars otherwise. The “price of horse i” is the price

of this Arrow-Debreu security. There are n such securities in the betting market, and n such

prices. Actual prices at the racetrack are typically presented in the more familiar form of

betting odds : the odds on a horse is related to the inverse of its Arrow-Debreu price. Thus

“cheap” horse (i.e., “longshots”) have long odds, and “expensive” (i.e., “favorites”) horse

have short odds.

The key to our equilibrium approach is recognizing that betting and prediction markets

are essentially product differentiated markets of the kind that have been extensively studied

in the industrial organization literature (e.g., Berry et al. (1995)). In a given race, horses can

be viewed as differing both by the probability that they will win p, and by their price R. That

is, horses in a market can be viewed as being differentiated “vertically” along the quality

dimension p, and given its price R, a horse can be represented simply as a price/probability

pair (R, p). In this way, betting markets come as close as any market to offering consumers

a menu G = {(R1, p1), . . . , (Rn, pn)} of simple lotteries akin to those used in choice experi-

ments, providing a natural laboratory to test theories of individual choice under risk. More

critically, due to the one period nature of a betting market (and the geographic distance

between tracks), it is possible to view prices the prices (Rk
1 , . . . , R

k
n) across different markets

k = 1, . . . , K (i.e. across different races) as being determined independent of one another.4

This stands in contrast to traditional financial securities, such as stocks, whose returns are

clearly dynamically linked across markets.

We model a betting/prediction market as a standard “textbook” Arrow-Debreu security

4More precisely, since different markets price different events, each market is only open for a short period
preceding the race, and arbitrage is unfeasible since one can only buy tickets, then one can legitimately
consider each race in isolation.

5



market. Thus given the exogenous qualities of the horses, i.e., the probability distribution

(p1, . . . , pn), we model the market prices (R1, . . . , Rn) as being determined by a competitive,

rational expectations equilibrium. However we introduce an identifying assumption into

the Arrow-Debreu framework that has proven extremely useful in the industrial organiza-

tion literature on product differentiation (Bresnahan, 1987; Berry et al., 1995), namely the

assumption of discrete choice behavior by consumers. That is, we postulate a population

of bettors T with a distribution PV over their risk preferences V (R, p) for simple gambles

(R, p). A bettor t ∈ T chooses to bet his “endowment” (the amount of money alloted for

the race) on the preferred price/probability combination (R, p) (i.e., a horse) offered by the

market. Such discrete choice behavior is consistent with how people seem to place bets in

these markets (Thaler and Ziemba, 1988).

Our first main result shows that by introducing the discrete choice assumption into the

usual Arrow-Debreu framework, we can uniquely solve for equilibrium prices under very

general assumptions on the distribution of preferences and the distribution of information

among agents. In particular, we show that for any distribution of preferences PV satisfy-

ing weak regularity conditions (the distribution is atomless, all consumers preferences are

continuous and increasing), regardless of the particular distribution of information (so long

as there is enough information in the market), there exists unique equilibrium prices. This

result has two important consequences for our empirical strategy. First, unique equilibrium

prices exist without requiring us to make any parametric assumptions about the functional

form of bettor preferences, i.e., assumptions such as requiring each bettor t ∈ T to have

preferences Vt(R, p) of the form V (R, p, θt) for some finite dimensional parameter θt ∈ Θ.

Thus the equilibrium theory is consistent with a wide range of underlying preference theories,

such as those suggested by EU, RDEU, etc. Second, the equilibrium solution of the model

gives rise to a reduced form relationship R(p1, . . . , pn) between the qualities of the horses

(p1, . . . , pn) and the market clearing prices (R1, . . . , Rn) in a race.
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Our second main result shows that this reduced form relationship R(p1, . . . , pn) between

prices and probabilities is invertible. This invertibility reflects the rational expectations

nature of the equilibrium : agents can invert equilibrium prices to learn the probabilities in

a race. The existence of this inverse reduced form relationship p(R1, . . . , Rn) provides the

basic key to estimating the structural model. As the econometrician, what we can actually

observe in the data are the prices (Rk
1 , . . . , R

k
n) and the index of the winning horse ikw across a

sample of races k = 1, . . . , K. Thus we cannot directly observe the qualities pi of the horses

i = 1, . . . , n in the race, and hence cannot directly identify the reduced form R(p1, . . . , pn)

from the data. However, since we can observe a draw from the probability distribution

(p1, . . . , pn) in the form of the horse that wins the race, the data do identify the inverse

reduced form p(R1, . . . , Rn).

Putting our two main results together gives us our estimation strategy. Suppose we

make a parametric assumption about the form of risk preferences. Thus for every bettor

t ∈ T , Vt(R, p) = V (R, p, θt) for some θt ∈ Θ ⊂ Rm. Then the only unknown primitive

of the structural model is the distribution F over bettor types θ. Through our equilibrium

theory, any such F implies an inverse reduced form relationship p(R1, . . . , Rn; F ). We can

thus estimate the unknown F by maximum likelihood since the winning horse in a race is an

outcome of the multinomial trial p(R1, . . . , Rn; F ), and the trials across races are independent

of one another.

This estimation strategy hinges critically on solving the reduced form of the model. While

our equilibrium theory supports the unique existence of the inverse reduced form relationship

between prices and probabilities, the actual estimation of the distribution F depends upon

our ability to solve for this relationship. While we could pursue numerical methods to achieve

this solution, the sheer size of the number of races at our disposal (all North American races

over a 3 year period, constituting some 200,000 races), and the fact that the average number

of horses is close to 10 (and hence we are solving for on average 10 unknowns (p1, . . . , pn) in
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each race), makes it extremely expensive just to compute the likelihood function for a single

F .

In our final set of results before turning to the empirical analysis, we show that when we

restrict the heterogeneity of risk preferences to be “one dimensional”, the inverse reduced

form admits a simplification that makes the estimation problem tractable. One dimensional

heterogeneity means that individuals differ along a single dimension θ ∈ R, which is com-

pletely natural in our setting since the horses in a race differ along a single vertical dimension,

namely the probability of winning p. In the same spirit as the industrial organization lit-

erature on vertical differentiation (Shaked and Sutton, 1982; Bresnahan, 1987), we assume

that the type θ orders individuals in terms of their price sensitivity, which in our setting

translates into “willingness to take risk”. Such a parametric structure on preferences causes

the inverse reduced form p(R1, . . . , Rn) to decompose in a convenient way that allows us

to nonparametrically identify and estimate the distribution F . The standard EU functional

forms such as CRRA and CARA are cases of one dimensional preferences.

In our empirial analysis, we compare CRRA/CARA preferences to the main behavioral

alternative. Among the most studied of the non-expected utility theories are rank dependent

expected utility (RDEU) (Quiggin, 1982) and cumulative prospect theory (CPT) (Tversky

and Kahneman, 1992). The key device that these theories use to describe an individual’s

attitude toward risk is the individual’s probability weighting function, which transforms the

probabilities that define a lottery into decision weights.5 Thus rank dependent and cumu-

lative prospect theory can be thought of as the “duals” to the EU model (Yaari, 1987) -

they attempt to describe risk attitudes through preferences that are nonlinear in probability

rather than nonlinear in wealth. Nonlinear probability weighting accounts for the main ex-

perimental anomalies in the literature (Starmer, 2000), which has led to repeated calls from

5Cumulative prospect theory generalizes expected utility one step beyond probability weighting by allow-
ing for the asymmetric treatment of losses and gains. We do not explore this aspect of CPT in the current
paper and is a topic of ongoing research.
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the experimental community to abandon expected utility theory in applied economic mod-

elling (see e.g., Rabin and Thaler (2001)). Yet simple expected utility representations, such

as time separable, constant relative risk averse (CRRA) preferences, continue to dominate

the literature on asset pricing, macroeconomics, contract theory, etc (Chiappori, 2006).

Using a data set consisting of all North American races over a three year period (2001-

2003), we estimate two different models of one dimensional preference heterogeneity. Under

expected utility theory, heterogeneity of risk attitudes is generated by allowing for indi-

vidual differences in the curvature of utility. Thus in the first model, types θ have differ-

ent curvatures in their utility for wealth uθ(w) (captured through a power function, i.e., a

CRRA functional form uθ(w) = wθ) and act according to EU theory (i.e., they maximize

Vθ(p, R) = puθ(R)). Rank dependent and cumulative prospect theory on the other hand

suggest that individual differences arise through differences in the curvature of the proba-

bility weighting function (Gonzalez and Wu, 1999). Thus in the second model, agents have

different curvature in their probability weighting function Gθ(p) (also captured through a

power function, i.e., G(p) = pθ), and act according to the probability weighting theory (i.e.,

they maximize Vθ(p, R) = Gθ(p)u(R)).

In the EU model, we find there to be economically significant heterogeneity of risk pref-

erences : there are a large group (40 percent of the population) of risk averting “grandmas”

who generally back the top favorite in a race, and then there is everyone else, who are risk

loving, and generally back the remaining longshots. As we show, this form of trade between

risk averters and risk lovers is not an accident, but rather reflects a key restriction of the

expected utility hypothesis : If bettors are expected utility maximizers, then equilibrium

prices exhibit the favorite longshot bias if and only if all the risk averters in the population

back the top favorite in a race. Since our data are in fact characterized by the favorite

longshot bias, we see this restriction coming out in our estimates. Thus if expected utility

theory were in fact misspecified, then by turning to the non-EU probability weighting model,
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we should see support for even more risk aversion in the population. However in the second

model, we find no such evidence - all bettors have perfectly linear probability weighting,

causing the estimated model to collapse to a homogeneous risk loving EU population, which

is empirically outperformed by the first model. Thus the “curvature of utility” theory of risk

preferences proposed by EU is better supported by the data than the “curvature of prob-

ability weighting” theory proposed by RDEU/CPT, in sharp contrast to the experimental

evidence.

Just how well do the predictions of the CRRA model fare? We compare the inverse

reduced form of our estimated model p(R1, . . . , Rn; F̂ ) to a flexibly specified multinomial

model p(R1, . . . , Rn; β̂), where β is a vector of parameters and β̂ are its estimated values.

The idea of the flexible model is to estimate the “true” reduced form contained in the data

that does not make any structural assumptions. Another test of expected utility theory, and

CRRA/CARA preferences in particular, is to test how much of the explanatory power of

the flexible reduced form our structural model’s reduced form is able to recover. We find a

very strong result - virtually all of the R2 from the flexible reduced form is recovered by our

structural model with CRRA preferences. Said another way, if one wanted to write down

an arbitrary statistical model for predicting the probabilities of winning from the market

prices, one can hardly do better than use our structural model (i..e Arrow-Debreu theory)

with CRRA bettors to derive this relationship.

Related literature Our approach to estimating risk preferences and testing the EUH

against market data has important antecedents in terms of both style and substance in the

economics literature. In terms of substance, we follow in the work of Jullien and Salanie

(2000), who first recognized betting markets as a natural test bed for theories of decision

making under risk. They also employ maximum likelihood methods for estimating different

models of risk preferences. However their model of racetrack prices lacked any heterogeneity
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of information or preferences, leading them to estimate the preferences of a “representative

bettor”. Thus although they find statistically significant departures from expected utility

theory, it is unclear whose preferences these departures represent, and more importantly,

what is their economic significance. In terms of style, our approach closely resembles the

pioneering work of Bresnahan (1987). Like us, Bresnahan (1987) models a vertically differ-

entiated goods market (in his case, automobiles), and explicitly solves for the reduced form

of a structural equilibrium model (in his case, oligopoly supply and demand). However his

interests lie in testing which supply side assumptions (competition or collusion) gave the

best empirically performing reduced form equations. Since there is no supply side in our

exchange economy, our interests rather lie in testing assumptions about the demand side.

2 A General Equilibrium Model of Betting Markets

2.1 The Pricing Puzzle

Two basic facts about betting markets that have thus far defied a unified explanation by any

economic model are the simultaneous efficiency and bias of prices (Sauer, 1998). The betting

odds at racetracks have been shown to be quite informationally efficient in the sense that

no information beyond the final market prices on each horse in a race is needed to predict

the probability of each horse winning the race. Nevertheless, a horse’s Arrow-Debreu price

is a biased estimate of its probability of winning : in North American tracks, the prices on

“favorites” (i.e., expensive horses) systematically underestimate the probability of winning,

and the prices on “longshots” (i.e., cheap horses) systematically overstate, a pattern known as

the favorite-longshot bias. Different nonlinear relationships between prices and probabilities,

such as the reverse favorite-longshot bias, have been discovered in other countries.

Our general equilibrium approach is able to capture these basic empirical realities quite

handily. The basic story behind the equilibrium is the following. Before the market opens at
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a given race, nature determines a state (p1, . . . , pn), the state being a probability distribution

over the n horses running the race, i.e., a roulette wheel. Bettors come to the market with

potentially different information concerning the underlying state, and they trade, using both

their private information and market prices to update their beliefs (that is, bettors have

rational expectations). The equilibrium prices/odds (R1, . . . , Rn) that prevail at market

close allow bettors to perfectly infer the underlying state (that is, the equilibrium is fully

revealing). After the close of the market, a spin of nature’s roulette wheel (p1, . . . , pn)

determines the winning horse iw in the race.

Under very general regularity conditions on the distribution of information and the dis-

tribution of preferences in the betting population, we show that there exists a unique fully

revealing rational expectations price equilibrium in the betting market. The rational expec-

tations equilibrium (REE) is a function R(p1, . . . , pn) that maps any possible state of nature

(i.e., a roulette wheel) (p1, . . . , pn) to a vector of market clearing prices (R1, . . . , Rn). The

fully revealing property of the REE means that the function R is invertible, with inverse

p(R1, . . . , Rn) allowing bettors to perfectly infer the race’s roulette wheel (p1, . . . , pn) from

the market prices.6 The unique existence of such a fully revealing REE thus explains the

observed informational efficiency of betting market prices : in equilibrium, market prices are

sufficient for perfectly inferring the true probability distribution over the horses in a race.

Of course, since the REE will not generally be the identity map, the model readily allows

for the observed “bias”, or difference between prices and probabilities in a race.

2.2 Market Clearing Prices

As we did in the introduction, we shall continue to use the language of horse races to describe

betting and prediction markets more generally. Consider a race with n horses running, with

6A special case of the model is when all bettors have private information that perfectly informs them of
the state.
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the outcome of the race being defined by the winning horse. An ex-ante market (i.e., before

the race is run) is open for the trade of n Arrow-Debreu securities. A unit of security i buys

1 dollar in the event that horse i wins the race, and 0 dollars otherwise. Let ri denote the

Arrow-Debreu price of security i, and let Mi denote the total number of dollars in the market

spent on purchasing security i. Since purchasing security i is equivalent to betting on horse

i, we can equivalently refer to Mi as the total number of dollars bet on horse i. Define the

market share of horse i, denoted si, to be the aggregate budget share of security i, i.e.,

si =
Mi

M1 + · · ·+ Mn

.

Finally, let τ denote the participatory tax per dollar bet, commonly called the track take.

We now establish the following simple result that plays a central role throughout the paper.

Proposition 2.1 The security market clears if and only if ri = si for each i = 1, . . . , n.

Proof Market clearing means the supply of dollars equals the demand of dollars in each of

the possible n outcomes of the race. This happens if and only if

(1− τ)Mi

ri

= (1− τ)(M1 + · · ·+ Mn) (∀i)

⇐⇒ ri = si (∀i). (1)

Thus a necessary condition for the security market to clear is that
∑n

i=1 ri = 1, i.e., the

Arrow-Debreu prices add up to 1.

Prices at the racetrack are not customarily quoted in terms of the Arrow-Debreu prices

ri, but are rather quoted in terms of the odds Ri on horse i. The odds Ri are defined as

net profit per dollar bet on horse i in the event i wins the race. Thus if the odds on a horse

are quoted as 2, and you bet 5 dollars on the horse, then if the horse wins you receive 15

dollars, your net profit being (5)(2) = 10. While the Arrow-Debreu prices are not explicitly
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quoted, they are nevertheless implicitly being quoted through the odds. That is, the odds

(R1, . . . , Rn) at a race implicitly define Arrow-Debreu prices (r1, . . . , rn), where

Ri =
(1− τ)

ri

− 1 (∀i).

Thus the odds market at a racetrack implicitly defines a textbook one-period and complete

Arrow-Debreu securities market.

Using the market clearing condition (1), we have that market clearing odds are

Ri =
(1− τ)

si

− 1. (2)

The market clearing condition (2) is in fact how betting odds are institutionally determined

at the racetrack, and parimutuel betting systems more generally. In view of Proposition 2.2,

we can understand the so called “parimutuel mechanism” expressed by (2) as a method of

setting the odds in a race so to ensure that the implicit Arrow-Debreu security market clears.

While the prices determined by (1) are market clearing, Arrow-Debreu equilibrium re-

quires that they also be consistent with utility maximizing behavior on the part of the bettors

at the track. That is, equilibrium occurs at prices (r1, . . . , rn) if aggregate demand at these

prices results in each horse i’s market share equaling ri. That is, in equilibrium, people

bet on horses in proportions equal to the prices. In order to model aggregate demand and

explore the equilibrium problem, we now turn to the issue of preferences.

2.3 Preferences

Suppose a bettor has beliefs (p1, . . . , pn) ∈ ∆n−1 over the possible outcomes of the race

(where ∆n−1 is the (n− 1) dimensional simplex, i.e., the set of probability distributions over

the horses), and is deciding which horse to back with the M dollars the bettor has alloted
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for the race. If the market odds are (R1, . . . , Rn), then from the point of view of the bettor,

each horse i in the race can be thought of as a simple gamble (Ri, pi), which yields a gain of

Ri per dollar bet with probability pi, and yields a loss of -1 per dollar bet with probability

(1−pi). Thus from the point of view of the bettor, the market offers a choice among a menu

of n gambles G = {(R1, p1), . . . , (Rn, pn)}.7

Assumption 2.2 (The Space of Preferences) We postulate the existence of a stable

(across races) continuum of consumers T . Each consumer t ∈ T has a complete, continu-

ous, transitive, and strictly monotonic preference relation %t over simple gambles (R, p) ∈

R+ × [0, 1]. The strictly worst gambles for any t ∈ T are any gambles of the form (R, 0).

Thus each consumer t’s preference relation can be represented by a continuous utility

function Vt : R+ × [0, 1] → R that is strictly increasing in a gamble’s net rate of return from

winning R (the first argument of Vt) and probability of winning p (the second argument of

Vt). In addition each consumer t’s utility function is strictly minimized whenever p = 0,

i.e., Vt(0, R) = Vt(0, R
′) and Vt(0, R) < V (p, R′) for any returns R,R′ and any probability

p > 0. That is, the strictly worst gamble for any consumer is one that has no probability of

winning, regardless of the return from winning (since this return is never realized).

Let V ⊂ RR+×[0,1] be the set of all such utility functions. We endow V with the relative

product topology, otherwise known as the topology of pointwise convergence. Let the mea-

surable sets in V be the Borel subsets (the σ-algebra of subsets generated by the open sets)

in this topology. Our population T gives rise to a probability measure PV over the space V.

The probability measure PV describes the distribution of consumer preferences for gambles

(R, p).

7More generally, we can allow the menu G to include the “no trade” option of not betting, which is
equivalent to a gamble that offers a net rate of return zero with probability one. The equilibrium analysis
we present still goes forward largely unchanged if the no trade option was included. To ease the current
exposition, we leave the no trade option out of the choice set.
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Our two final assumptions are mild regularity assumptions on the distribution of pref-

erences PV . The first assumption requires that the probability measure PV be sufficiently

continuous, or atomless, so as to not permit a positive mass of consumers to be indifferent

between two distinct gambles when at least one of the gambles has a non-zero probability of

winning.

Assumption 2.3 (Continuity) For any two distinct gambles (Ri, pi) and (Rj, pj) with pi

or pj greater than 0 (or both), the number of consumers indifferent between gamble i and j

has a probability measure of zero. More precisely, if pi > 0 or pj > 0 then

PV ({V ∈ V : V (Ri, pi) = V (Rj, pj)}) = 0.

If all consumers t ∈ T have common beliefs (p1, . . . , pn) ∈ ∆n−1, then for any odds

(R1, . . . , Rn), the market offers bettors a common menu of gambles G.

G = {(R1, p1), . . . , (Rn, pn)} ⊂ R+ × [0, 1].

The subset of the population T that prefers the ith gamble from such a common set G is

denoted

Si = {V ∈ V : V (Ri, pi) ≥ V (Rj, pj) for all j 6= i}.

The share of the population T that prefers the ith gamble from the common set G is thus

qi(G) = qi(R1, . . . , Rn; p1, . . . , pn) = PV (Si).
8 (3)

We refer to qi as the market share of the ith gamble from G (i.e., if the market offered a

choice of gambles from the common set G, then qi is the share of the population T that

8Si is measurable based on the topology on V.
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chooses the ith gamble).

Our last assumption, desirability, requires that for any gamble g = (pg, Rg) with nonzero

probability of winning pg > 0, and for any finite common set of gambles G with g ∈ G, it is

always possible to induce some positive mass of the population to prefer g from G by making

g’s return from winning Rg sufficiently large. If the EUH were true, then desirability would

be automatically satisfied if, for example, any nonzero fraction of the population were risk

loving. We now state these assumptions more precisely.

Assumption 2.4 (Desirability) For any menu of common gambles, if pi > 0, then it is

possible to make Ri large enough such that the market share of horse i becomes positive.

This completes our assumptions on the preferences of bettors. As can be seen, we have

made only weak regularity assumptions on the space of preferences (monotonicity, continuity,

etc) and the distribution of preferences (atomlessness, etc). Thus nearly any theory of risk

preferences can be fit inside our space, which is an important point since main goal of the

equilibrium theory to follow is to help us recover the “correct” preference theory from the

data.

2.4 Information

Following the suggestion of Figlewski (1979), we consider the information problem facing

bettors at the market as one involving a mixture of risk and uncertainty. In a given race,

there exists some “true” objective probability distribution (p1, . . . , pn) that determines the

outcome of the race, and thus bettors face a well defined risk as to which horse will win. That

is, the winner of the race is truly determined by the spin of a roulette wheel governed by the

probability distribution (p1, . . . , pn). However betters are uncertain about the distribution

(p1, . . . , pn).

In order to capture this uncertainty, we introduce the state space S = ∆̂n−1, where
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∆̂n−1 denotes the set of probability distributions in the interior of ∆n−1 such that no two

probabilities are equal, i.e., pi 6= pj if i 6= j. The interpretation is that in each race, nature

chooses a state in S, which is the true roulette wheel that determines the winning horse.

The state is such that a horse always has a nonzero chance of winning, and no two horses

are statistically identical.

After nature chooses a state and before the market opens, bettors receive private infor-

mation concerning the state. We model this private information in the usual way by giving

each bettor t ∈ T an information partition I t over S. Thus when nature chooses the state

s ∈ S, bettor t cannot distinguish between the occurrence of s and the occurrence of any

other element inside I t(s) ⊂ S. Since our population is a continuum, we make the following

reasonable assumption on the distribution of information.

Assumption 2.5 (Law of Large Numbers) For any two distinct states s′ and s, a non-

measure zero mass of bettors can distinguish between the occurrence of s and s′, i.e., s′ 6= s

implies {t ∈ T : I t(s) 6= I t(s′)} has nonzero mass (w.r.t. PV ).

Thus in a hypothetical world of pooled information, where every bettor’s private informa-

tion I t is public knowledge, each bettor exactly knows the state s, and hence knows nature’s

roulette wheel (p1, . . . , pn) ∈ ∆̂n−1.

2.5 Fully Revealing Rational Expectations Equilibrium

We now address the problem of price equilibrium in the odds market at horse racetracks

(which recall is our metaphor for betting and prediction markets more generally). We have

already shown in Section 2.2 that the odds market implicitly defines a “textbook” Arrow-

Debreu securities market. Thus we seek equilibrium prices (r1, . . . , rn) for the n securities

in the market. Since we have a continuum of consumers and thus price taking behavior

on the part of bettors is appropriate, we seek a competitive price equilibrium. Moreover,
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since bettors have imperfect information, they may use prices in addition to their private

information to help infer the state (since different states of nature may command different

market prices even if the states cannot be distinguished by an individual bettor). The

empirical regularity that the prices at racetrack are sufficient to econometrically uncover

the underlying probability distribution over the horses suggest that the information revealing

function of prices is perfect.

These observation taken together lead us to seek a fully revealing rational expectations

equilibrium (REE) of the betting market model. We briefly review the fully revealing REE

concept as it applies to our model, but for a more general treatment, see (Mas-Colell et al.,

1995, ch. 17)). First, we hypothetically assume a world of pooled information in which all

bettors know each other’s private information. By the Law of Large Numbers assumption

on the distribution of information, every bettor would perfectly know the state s in such

a world. When every bettor perfectly knows the state, we show the unique existence of a

usual competitive price equilibrium (rs
1, . . . , r

s
n). We then consider the map s 7→ (rs

1, . . . , r
s
n)

from states of nature to the pooled information price equilibrium. We show that this map

is one to one, and thus constitutes a fully revealing REE. The idea is that while our world

of pooled information was hypothetical, the fully revealing REE makes it a reality through

the inverting of prices.

2.5.1 Pooled Information

Thus assume a world of pooled information, in which all bettors know each other’s private

information, and thus know the state of nature (p1, . . . , pn) ∈ ∆̂n−1 from which the winning

horse is drawn. Together with the market odds (R1, . . . , Rn), this gives rise to a menu of

gambles G = {(R1, p1), . . . , (Rn, pn)}, which is common to all the bettors in T . We seek a

vector of Arrow-Debreu prices (r1, . . . , rn) ∈ ∆n−1 that is consistent with market clearing

and utility maximization on the part of bettors. We can “plug-in” for the market clearing
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condition (1), and simplify the problem to seeking a vector of market shares (s1, . . . , sn) ∈

∆n−1 that is consistent with utility maximization. Thus a la (2), the set of gambles available

in the market has the form G = {(R(si), pi)}i∈{1,...,n}.

Given such a set G, the market share of the ith horse as we have already examined, is

given by

qi(R(s1), . . . , R(sn); p1, . . . , pn).

Thus the market is in equilibrium when, for some market shares (s∗1, . . . , s
∗
n),

s∗i = qi(R(s∗1), . . . , R(s∗n); p1, . . . , pn) for i = 1 . . . , n. (4)

If such a vector of market shares exist, then by the market clearing condition (1), (r∗1, . . . , r
∗
n) =

(s∗1, . . . , s
∗
n) constitute an vector of equilibrium Arrow-Debreu prices.

Theorem 2.6 In a world of pooled information, for any state of nature (p1, . . . , pn) ∈ ∆̂n−1,

there exists unique equilibrium odds (R(s∗1), . . . , R(s∗n)), with market shares (s∗1, . . . , s
∗
n) ∈

∆̂n−1.

2.5.2 Rational Expectations

Thus for any state of nature (p1, . . . , pn) ∈ ∆̂n−1, there exists a unique n-tuple of pooled

information equilibrium odds of the form

(R∗
1, . . . , R

∗
n) = (R(s∗1), . . . , R(s∗n)) for (s∗1, . . . , s

∗
n) ∈ ∆̂n−1. (5)

Let us denote this mapping by R(p1, . . . , pn). We now wish to show that this mapping is one

to one, and hence constitutes a unique fully revealing REE. The problem boils down to the

following : given any n-tuple of odds (R∗
1, . . . , R

∗
n) of the form (5), can we uniquely recover

the commonly known state (p1, . . . , pn) that supports the odds in equilibrium? That is, can
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we uniquely solve the system of equations in (p1, . . . , pn) ∈ ∆̂n−1,

s∗i = qi(R
∗
1, . . . , R

∗
n; p1, . . . , pn) for i = 1, . . . , n. (6)

Theorem 2.7 For any n-tuple of odds (R∗
1, . . . , R

∗
n) of the form (5), there exists a unique

probability distribution (p∗1, . . . , p
∗
n) ∈ ∆̂n−1, consisting of distinct and nonzero probabilities,

that solves (6).

Thus the function R(p1, . . . , pn) constitutes the unique fully revealing REE of the model.

We express the inverse of the REE as p(R1, . . . , Rn), which maps any vector of observable

and distinct odds (R1, . . . , Rn) to the underlying state (p1, . . . , pn) ∈ ∆̂n−1. It is this inverse

function that bettors in our model use to infer nature’s roulette wheel from market prices. It

is straightforward to show that this inverse pricing function satisfies the symmetry condition

that for any i = 1, . . . , n,

pi(Ri, R−i) = pi(Ri, Q−i), (7)

where Q−i is a permutation of the elements in R−i.

3 The Empirical Strategy

The market equilibrium of our model naturally generates price variation across races. Races

exogenously differ in the number of horses running n, and the underlying state of nature

(p1, . . . , pn) ∈ ∆̂n−1. From this exogenous variation, the REE pricing function R generates

observable odds (R1, . . . , Rn) that vary across races. In each race, a spin of the roulette

wheel (p1, . . . , pn) determines the index of the winning horse, which we denote by iw.

Thus the REE R(p1, . . . , pn) expresses the reduced form of our structural model - it is

the mapping from the exogenously varying primitives (states of nature) to the endogenously

determined equilibrium prices (R1, . . . , Rn). Moreover this reduced form is invertible, with
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inverse p(R1, . . . , Rn). The essential link between our equilibrium theory and the data lies

in the fact that the inverse reduced form can be recovered using the variation in standard

racetrack data. Our data consist of a sample of races k = 1, . . . , K. For each race k, we

observe the number of horses running nk, the vector of equilibrium odds (Rk
1 , . . . , R

k
nk), and

the index of the winning horse ikw. This data thus nonparametrically pins down the inverse

reduced form : pi(R1, . . . Rn) is consistently estimated by the fraction of times horse i wins

in the subset of races having prices (R1, . . . , Rn).

We now address the question of what structural parameters of our model we can identify

through knowledge of the reduced form. The unknown primitive recall is the distribu-

tion of preferences PV . Suppose we parameterize this distribution by assuming Vt(R, p) =

V (R, p, θt) for θt ∈ Θ ⊂ Rn. Such a parameterization may be suggested by a particular

preference theory, such as expected utility theory, or rank dependent utility theory, etc. We

then have an unknown continuous distribution F over the types θ ∈ Θ. We thus pose two

natural questions.

1. Does knowledge of the reduced form R (or equivalently, its inverse p) nonparametrically

identify the distribution F? That is, do different F ’s generate different p’s in our

equilibrium model?

2. If the distribution over types F is identified, then how can we estimate it from our

data?

We now address both of these questions for the case where the heterogeneity of risk

preferences is presumed to be “one dimensional”. While seemingly restrictive, a model of one

dimensional heterogeneity is the common way that individual differences in risk preferences

are conceived : people differ in a “willingness to take risk” attitude, and this difference

in attitude results in differences in choice behavior. For example, Dohmen et al. (2005)

find that survey questions asking people to rank themselves in terms of “willingness to take
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risk” on an 11-point scale turn out to be good predictors for actual behavior in subsequent

choice experiments. Thus we can view a model of one dimensional heterogeneity as a good

approximation. In expected utility modelling, the CARA and CRRA functional are both

cases of one dimensional preferences. Moreover, since our horses are only differentiated in

one dimension, namely quality (i.e. probability of winning), then it is natural to assume

that bettors differ in the single dimension of “willingness to pay for quality”, which in our

setting translates into “willingness to take risk”.

4 One Dimensional Heterogeneity

In this section, I present our model of betting market equilibrium for the special case that

heterogeneity across bettors in preferences for risk can be reduced to a single dimensional

type θ that orders individuals in terms of “willingness to take risk”. I show that in this one

dimensional model, the inverse reduce form p(R1, . . . , Rn) has a special recursive structure.

Using this recursive structure, we can both nonparametrically identify the distribution F

over types and estimate F by way of a numerically tractable maximum likelihood estimator.

4.1 One dimensional preferences

We now introduce more assumptions on the space of preferences and the distribution of

preferences in addition to what was laid out in Section 2.3. This additional structure we

shall refer to as the “one dimensional model”.

Assumption 4.1 (The Space of Preferences) We have a parameterized utility function

over gambles

V : R+ × [0, 1]× R → R,

where V (R, p, θ) is the utility that a person of type θ receives from consuming the gamble
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(R, p). V is continuous in (R, p, θ), and for each θ ∈ R, V (R, p, θ) is strictly increasing in p

and R, and strictly minimized at p = 0. The domain of θ is R, although any interval valued

domain is equally applicable.

Assumption 4.2 (The Distribution of Preferences) The type θ is distributed accord-

ing to a continuous CDF F that is strictly increasing over the support of θ, (and thus F

admits a strictly increasing inverse CDF F−1).

Assumption 4.3 (Single Crossing) The function V (R, p, θ) satisfies the single crossing

condition that for any two gambles (R1, p1) and (R2, p2) with p1 > p2, and for some θ such

that

V (R2, p2, θ) ≥ V (R1, p1, θ),

then θ′ > θ implies that

V (R2, p2, θ
′) > V (R1, p1, θ

′).

Now consider a menu of n gambles G = {(R1, p1), . . . , (Rn, pn)}, and let the subset of the

population who chooses (Ri, pi) from G be denoted

Ii =

{
θ ∈ R : V (Ri, pi, θ) = max

j∈{1,...,n}
V (Rj, pj, θ)

}
.

Thus the share of the population who choose (Ri, pi) from G is qi(G) =

qi(R1, . . . , Rn; p1, . . . , pn) = Pθ(Ii). (8)

Clearly, each Ii is a closed set.

Now suppose that S = {i1, . . . , im} ⊂ {1, . . . , n} indexes the gambles in G that receive

non-zero market share, i.e., i ∈ S iff qi(G) > 0. It is fairly straightforward to show the

following result, which is largely driven by the single crossing assumption.

24



Theorem 4.4 There exists −∞ < θ1 < · · · < θm−1 < ∞ such that

Ii1 = (−∞, θ1], Ii2 = [θ1, θ2], . . . , Iim = [θm,∞)

and

Vθ1(Ri1 , pi1) = Vθ1(Ri2 , pi2), . . . , Vθm−1(Rim−1 , pim−1) = Vθm−1(Rim , pim) (9)

where

Ri1 < · · · < Rim and pi1 > · · · > pim .

As a simple corollary to the theorem, the market shares qi(G) for i ∈ S can be expressed as

qi1(G) = F (θ1)

qi2(G) = F (θ2)− F (θ1)

...

qim(G) = 1− F (θm−1).

Thus in summary, given a menu of gambles G, and the indices S = {i1, . . . , im} of gambles

receiving non-zero market share, the market shares qij(G) for j = 1, . . . ,m are determined by

the locations θ1, . . . , θm−1 of the marginal bettors, where the marginal bettor θj satisfies the

marginal condition (9) of being indifferent between the gambles (Rij , pij) and (Rij+1
, pij+1

).

4.2 Equilibrium

Recall that by our market clearing conditions (1) and (2), the market share si alloted to

each horse i determines its return Ri through

Ri = R(si) =
1− τ

si

where
n∑

i=1

si = 1. (10)
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In market equilibrium, the share alloted to each horse is such that

si = qi(R(s1), . . . , R(sn); p1, . . . , pn) for i = 1, . . . , n. (11)

I now show if we observe the returns (R1, . . . , Rn) in a betting market, which by (10)

implies that we also observe the market shares (s1, . . . , sn), then we can recover the lo-

cations θ1, . . . , θn−1 of the marginal bettors. We can thus solve for the underlying state

(p1, . . . , pn) that satisfies (11) by finding the probability distribution over horses that satis-

fies the marginal conditions (9). Let us see precisely how this works.

Step 1 : Recovering the Marginal Bettors

Suppose we observe the returns (R1, . . . , Rn) in a market, which are ordered such that

R1 < · · · < Rn.

As a necessary condition for equilibrium, it must be that

p1 > · · · > pn.

Since all the returns are finite, each horses receives a positive market share. Thus there exist

marginal bettors θ1, . . . , θn−1 such that

I1 = (−∞, θ1], I2 = [θ1, θ2], . . . , In = [θn−1,∞).
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and thus

s1 = F (θ1)

s2 = F (θ2)− F (θ1)

...

sn = 1− F (θn−1).

(12)

Since the shares s1, . . . , sn are observable via (10), we can invert the system (12) to locate

the marginal bettors θ1, . . . , θn−1, i.e.,

θ1 = F−1(s1)

θ2 = F−1(s1 + s2)

...

θn−1 = F−1(s1 + · · ·+ sn−1).

(13)

Step 2 : Recovering the Probabilities

Having recovered the marginal bettors θ1, . . . , θn−1, we can find the probabilities

p1 = p1(R1, . . . , Rn), . . . , pn = p(R1, . . . , Rn)

that satisfy the equilibrium condition (11) by finding the probability distribution (p1, . . . , pn)

that satisfies the marginal conditions (9). The solution to this problem admits a very con-

venient recursive structure, which we now reveal.

By our assumptions on V , for any choice of p1 ∈ [0, 1], there are unique values of

p∗2(p1), . . . , p
∗
n(p1) that satisfy the marginal conditions (9). The functions p∗i (p1) for i =

2, . . . , n are continuous and increasing. Our problem is to find p1 such that

p1 + p∗2(p1) + · · ·+ p∗n(p1) = 1. (14)
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Notice that p1 = 0 implies that p∗2(p1) = 0, . . . , p∗n(p1) = 0 since for every θ, Vθ(R, p) is

strictly minimized at p = 0. Likewise, it is clear that p1 = 1 implies

p1 + p∗2(p1) + · · ·+ p∗n(p1) > 1.

Thus for a unique p1 ∈ (0, 1) we have that (14) is satisfied.

Example : Expected Utility Theory

If bettor preferences follow expected utility theory, then not only do the p∗i (p1) functions

admit a closed form, but we can also analytically solve for p1 in (14).

Suppose preferences in the population satisfy expected utility theory. Then

Vθ(R, p) = pUθ(R) + (1− p)Uθ(−1).

Now consider the marginal condition for the ith marginal bettor θi, namely

Vθi
(Ri, pi) = Vθi

(Ri+1, pi+1)

⇒ piUθi
(Ri) + (1− pi)Uθi

(−1) = pi+1Uθi
(Ri+1) + (1− pi+1)Uθi

(−1)

⇒ pi+1 =

(
Uθi

(Ri)− Uθi
(−1)

Uθi
(Ri+1)− Uθi

(−1)

)
pi.

For i = 1, . . . , (n− 1), define

ci =
i∏

j=1

Uθj
(Rj)− Uθj

(−1)

Uθj
(Rj+1)− Uθj

(−1)
.
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Then we have that

p∗2(p1) = c1p1

p∗3(p1) = c2p1

...

p∗n(p1) = cn−1p1.

Thus (14) becomes

p1 + c1p1 + · · ·+ cn−1p1 = 1,

which yields

p1 =
1

1 + c1 + · · ·+ cn−1

.

Thus for a given family of expected utility theoretic preferences Vθ, and a given CDF F

over θ, and a given race R1 > · · · > Rn, we can analytically solve for the underlying state of

nature (p1, . . . , pn) ∈ ∆̂n−1 in market equilibrium, i.e. analytically solve for the inverse REE

of the model.

4.3 Nonparametric Identification

We now show that the one dimensional model nonparametrically identifies the underlying

distribution of preferences F up to a tight equivalence class. Let us consider a fixed number

of horses n. Define the similarity relation ∼ over the possible CDF’s of the model as follows.

For any two CDF’s F and G over θ, we say F ∼ G iff F−1(x) = G−1(x) for all x ∈ (1/n, 1).

Thus two CDF’s are similar if all of their quantiles greater than 1/n are the same. Let the

inverse reduced form of model under F and G be denoted pF and pG respectively. We now

show that any two ∼ distinct CDF’s generate different reduced form relationships between

the prices and probabilities in a race.
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Proposition 4.5 If F and G are both continuous and strictly increasing CDF’s over θ, then

their respective reduced forms are different if and only if the CDF’s are not ∼ similar.

Proof We prove sufficiency. Necessity follows similarly. Suppose that F and G are not ∼

similar and thus F−1(x) 6= G−1(x) for some x > 1/n. Then we can find a race with odds

(R(s1), . . . , R(sn)) where s1 = x1. Thus the first marginal bettor under F , θF
1 , differs from

the first marginal bettor under G, θG
1 . Suppose (pF

1 , . . . , pF
n ) is the unique state that supports

these odds in equilibrium under the distribution F , and thus pF
2 solves for p2 in

VθF
1
(R1, p

F
1 ) = VθF

1
(R2, p2).

Then by single crossing, it cannot also be the case that pF
2 also solves for p2 in

VθG
1
(R1, p

F
1 ) = VθG

1
(R2, p2).

Thus the inverse reduced form of the model under F , pF (R1, . . . , Rn) cannot equal the

inverse reduced under G, pG(R1, . . . , Rn) (in particular they must differ at our chosen

(R(s1), . . . , R(sn))).

4.4 Estimation

Using (14), the solution of the underlying state of nature from the observed prices in a

race becomes a one dimensional problem - searching for p1. This can be accomplished

numerically in a tractable way (using bisection for instance). For the case when the one

dimensional preferences satisfy expected utility theory, then we have shown that the state

can be solved for analytically. Whether numerically or analytically, the structure of the one

dimensional model allows us to easily compute the inverse reduced form relationship of the

model p(R1, . . . , Rn; F ) given the CDF F . Using our sample of races k = 1, . . . , K (the
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notation for our data was given in Section 3), we can thus express the log-likelihood of any

strictly increasing and continuous CDF F in the following way,

LL(F ) =
K∑

k=1

log(pikw
(Rk

1 . . . . , R
k
nk ; F )).

A maximum likelihood estimator F̂ of the true distribution of preferences F0 maximizes the

function LL(F ).

5 The Favorite Longshot Bias

Before we turn to the empirical analysis, we briefly explore the empirical content of the

expected utility hypothesis as it applies to our data. What about the EUH is being tested

by our empirical strategy? We now show that for the one dimensional model, the EUH

makes a strong prediction about the favorite longshot bias, which is a key pattern present

in the data.

The favorite-longshot bias (FLB) is an empirical relationship between the odds on a horse

and the profitability from betting on a horse (see Jullien and Salanie (2002) for a history of its

discovery). Equivalently, the FLB implies a relationship between the true probability of the

horse winning and its Arrow-Debreu price : prices under-predict probabilities for favorites

and over-predict probabilities for longshots. The FLB is important for our purposes because,

as we show below, it forces the expected utility hypothesis to make a strong prediction as to

the composition of bettors at the track. It is this prediction that helps us understand what

the data are testing when we compare expected utility theory to non-expected utility theory.

Consider a race with state (p1, . . . , pn) and odds (R1, . . . , Rn). Recall that we can re-

express prices in terms of Arrow-Debreu prices (r1, . . . , rn) as shown in section 2.2. Ignoring

track take (since it does not substantively change the analysis), the expected return from
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betting on horse i is :

ERi = piRi + (1− pi)(−1)

= pi

ri
− 1. (15)

Order horses from most expensive (“favorites”) to cheapest (“longshots”), i.e., R1 < · · · <

Rn. The favorite-longshot bias (FLB for short) is the empirical finding that ERi is decreasing

in i. In terms of (15), the FLB Implies that ri underestimates pi for market favorites, and

overestimates pi for longshots.

We now state the key lemma for understanding the FLB.

Lemma 5.1 In a race, suppose R1 > · · · > Rn and p1 < · · · < pn, and consider the menu of

gambles G = {(R1, p1), . . . , (Rn, pn)}. If ERi for i = 1, . . . , n is constant, then j > i implies

the gamble (Rj, pj) is related to (Ri, pi) by a mean-preserving spread.

Proof If i < j, the distribution function Fi(x) of the gamble (Ri, pi) lies strictly below the

distribution function Fj(x) of the gamble (Rj, pj) for x < Ri, and lies strictly above for

x > Ri. Thus since the distribution functions are single crossing and have the same mean,

(Rj, pj) is related to (Ri, pi) by a mean-preserving spread.

Remark As a simple corollary to the lemma, if j > i and ERi ≥ ERj, then a risk averter

strictly prefers the gamble (Ri, pi) to (Rj, pj). Likewise, if ERj ≤ ERi, then a risk lover

strictly prefers the gamble (Rj, pj) to (Ri, pi). The intuition for the corollary is simple. If we

start at the “right prices” ri = pi, and hence ERi is constant across i, then by the lemma,

i < j implies that a risk averter strictly prefers a bet on horse i to horse j, and a risk lover

strictly prefers a bet on horse j to horse i. If we shift up the mean of the favorite i, the risk

averter continues to strictly prefer i. If we shift up the mean of the longshot j, the risk lover

continues to strictly prefer j.
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We now pose the following question. Let us assume the one dimensional model of betting

market equilibrium. Suppose we know that the FLB holds true in a race. What does that

teach us about the composition of bettors at the track? The following prediction is a key

consequence of the expected utility hypothesis.

Theorem 5.2 A necessary and sufficient condition for the FLB to arise in equilibrium is

that all of the risk averters in the population bet on the top favorite. In particular, the

fraction of risk averters in the population cannot be greater than or equal to p1, the probability

of winning for the top favorite.

Proof Let us prove sufficiency. Suppose all of the risk averters bet on horse 1, the top

favorite. Then all of the marginal bettors θi for i = 1, . . . , (n− 1) are risk lovers. However,

using the corollary, in order for each such θi to be indifferent between the gamble (Ri, pi)

and the gamble (Ri+1, pi+1), it must be the case that ERi > ERi+1 for all i. But this is the

FLB, and we have sufficiency.

Consider now necessity. Suppose not all of the risk averters bet on the favorite. Then we

know that the first marginal bettor, θ1, is a risk lover. However then it is not possible for

the FLB to hold, since the FLB implies that ER1 > ER2. But by the corollary, θ1 would

then strictly prefer to bet on horse 1, and thus he cannot be the marginal bettor. Hence we

have necessity.

In particular then, since the FLB requires F (θ1) < p1 (since otherwise ER1 ≤ ERj for

some j > 1 by (15)), it cannot be the case that the fraction of risk averters in the population

is greater than p1.

Thus the EUH makes a strong prediction as to the composition of bettors at the track if the

FLB is to hold. The EUH predicts that there is a chunk of risk averting “grandmas” who

back favorites, and then everyone else (risk lovers) who sort across the remaining horses.

This is the essential empirical content of the EUH in our model, for it limits the amount
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of risk aversion possible in the population if the race data that are characterized by the

FLB (which they are). Since risk aversion in non-expected utility theories need not respect

second order stochastic dominance, which is the key property used in the above proofs, these

theories do not face the same upper bound on the fraction of risk averters. Thus one way

to understand how the EUH can be tested is to see whether the amount of risk aversion

allowable by EUH is a binding constraint. That is, we can estimate an expected utility

model of preference heterogeneity, and in so far as expected utility is misspecified, then

estimating a non-expected utility model should yield a greater percentage of risk aversion in

the population and thereby improve the fit to the data.

6 Empirical Analysis

We now turn to estimating the distribution of risk preferences in the betting population. In

order to do so by the methodology we have developed, we must assume a parametric form for

V (R, p, θ). The two competing hypothesis concerning the nature of risk preferences described

in Section 1, namely expected utility and probability weighting (i.e. RDEU/CPT), suggest

distinct parametric strategies. Under expected utility, different types θ differ in their risk

preferences due to differences in the curvature of their utility. We can capture such behavior

through the representation V (R, p, θ) = puθ(R) = pRθ, i.e., a power utility specification,

which is a case of constant relative risk averse (CRRA) preferences. Thus higher θ types are

more risk loving, and thus the specification satisfies our single crossing condition.

On the other hand, probability weighting theories emphasize the nonlinear distorting

of probability that occurs during decision making as the main explanatory device for risk

attitudes. We can introduce a probability weighting function Gθ(p) for p ∈ [0, 1] that is

strictly increasing and satisfies G(0) = 0 and G(1) = 1, and specify V (R, p, θ) = Gθ(p)u(R)

(which corresponds to a rank dependent preference specification as explained in Jullien and

34



Salanie (2000)). Thus G distorts a gamble’s probability of winning into a decision weight.

We specify Gθ(p) = p1/θ. Thus larger θ types have more concave G’s, and thus overweight

the probability of winning, i.e. they have more risk loving attitudes. Thus this specification

also satisfies the single crossing specification. Here we see the duality between probability

weighting and expected utility quite clearly : risk love under expected utility corresponds to

convex u, whereas risk love under probability weighting corresponds to concave G.

There are a number ways we can flexibly specify the distribution F over types for each

of the two models (recall that the distribution is nonparametrically identified within each

model). Here we choose to illustrate the results using a simple two parameter specification for

the inverse distribution function F−1(x; β), where β is a two dimensional parameter vector

(our basic findings are robust to the complexity of the specification of F .). Let us choose an

upper and lower bound for θ, denoted as θmin and θmax respectively, which we can be sure

will not be binding (virtually no one in the population lives outside the bounds). Then we

specify

F−1(x; β1, β2) = θmin + (θmax − θmin)f(x; β1, β2),

where f(x; β1, β2) is a nondecreasing function from [0, 1] to [0, 1] with parameters β1 and β2.

One such f is provided by Prelec (1998), which has the form

f(x; β1, β2) = exp(−β1(−ln(x))β2).

An advantage of this specification is that it allows us to nest the possibility that there is no

heterogeneity in the population, which corresponds to β2 = 0, in which case the population

is a point mass at θmin + (θmax − θmin) exp(−β1).

Below we present the estimated distribution F−1
EU for the expected utility model. As can

be seen, close to 40 percent of the population is risk averse (with θ ranging from .8 to 1) and

the remainder of the population is risk loving, with θ ranging from 1 to 1.6. Surprisingly,

35



Figure 1: The estimated inverse CDF F−1
EU

there is no evidence for extreme risk loving in the population, which might be thought to be

the true for racetrack bettors. Rather, there is evidence of a chunk of (mild) risk averters,

who are the grandmas that bet on top favorites (the average market share for the top favorite

in a race is 32 percent, with a standard deviation of .08 percent), and there is everyone else,

who spread themselves over the remaining horses.

Let us now present the estimated distribution F−1
PW for the probability weighting model.

Here we find a strong result : the estimated values of βPW
2 is of the order .1−4 and is not

significantly different than 0. The estimated value of β1 is such that the distribution F−1
PW

becomes a point mass over θ = 1, and thus the entire population behaves linearly with

respect to probability. We parameterized u in the probability weighting model to have a

CARA functional form, and the estimated u is slightly risk loving with a CARA coefficient

of -.01 (again, the finding is robust to the specification of u, which can also be estimated

nonparametrically). Thus instead of seeing more risk averse behavior in the probability

weighting model, which recall is our prediction if the expected utility hypothesis did not hold,

we see the estimated probability weighting model collapsing to a representative expected
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utility maximizing risk loving agent. Moreover this representative expected utility maximizer

is (as can be expected) empirically outperformed (both in terms of likelihood value and R2)

by the heterogeneous expected utility specification. Thus the data supports the explanation

that risk attitudes amongst bettors are generated by differences in the curvature of utility,

rather than the probability weighting explanation.

We present one more test of the adequacy of the expected utility hypothesis, and the

CRRA functional form assumption in particular. Recall that our estimated distribution

F−1
EU implies an inverse reduced form p(R1, . . . , Rn; FEU) of the betting market model. We

can also estimate a flexible functional form p(R1, . . . , Rn; α) that predicts the probability

of a horse’s success given the vector of prices in a race, which depends on a vector of

parameters α. The idea of the flexible reduced form is to capture the “true” relationship

between probabilities and prices in the data without making any structural assumptions.

The question is, how much of this true relationship can our structural model with CRRA

preferences recover? There are a number of multinomial regression diagnostics that measure

how well one model fares against another, but we focus here on the simplest, namely R2

(where residuals are formed by taking the binary outcome of winning for each horse in each

race minus its predicted probability). Using a specification developed in a follow up piece

(Chiappori et al., 2006), we use

pi(R1, . . . , Rn) =
eqi∑n

j=1 eqj

with, e.g.

qi(R1, . . . , Rn) =
K∑

k=1

ak(Ri, α)Tk(R−i)

and the Tk’s are symmetric sieve functions. In the same fashion as estimating the distribution
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F in our structural model, we maximize over α in the log-likelihood

K∑
k=1

log pikw
(Rk

1 , . . . , R
k
nk , α).

Once again we find a very strong result. Virtually all (99 percent) of the R2 from the

flexible specification is recovered by our structural model with estimated preferences F−1
EU .

This is particularly striking since our structural estimate involved only two parameters (the

parameters of the CDF), whereas the flexible specification has well over 30 parameters.

Thus simple CRRA preferences alongside our Arrow-Debreu equilibrium theory appear to

completely explain the relationship between prices and probabilities contained in the data.

Said another way, if one wanted to forecast the probabilities of winning of the horses in a

race using the market odds, one can hardly do better than use our structural model with

CRRA heterogeneity to derive this forecast.

7 Conclusion

This paper is motivated by the widening gulf between the application of the expected utility

hypothesis to modelling economic phenomena of empirical interest, and the existing empirical

evidence concerning the validity of the expected utility hypothesis itself. The basic reason for

this impasse is that experimental tests of economic hypotheses have long been viewed with

skepticism by neoclassical economists. In his famous defense of the neoclassical approach to

economics, Milton Friedman (Friedman, 1953) argued that the test of a hypothesis should

not be based on its assumptions, but rather based on its predictions in the settings under

which the hypothesis is proclaimed to work. As used by economists, the EUH describes

the behavior of agents in real world markets, where opportunities for self selection, feedback

from the environment, and learning are present, not the behavior of experimental subjects in
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the laboratory. Alongside equilibrium theory, the EUH makes predictions about the market

outcomes (e.g., prices and quantities) that results from the interactions of these agents.

A neoclassical examination of the EUH thus should be based on testing those predictions

against market data, rather than directly testing the EU assumptions (e.g., the independence

axiom) against experimental data.

In this paper, we take up the question of testing the expected utility hypothesis against

real world market data. We have shown that the class of markets that have come to be known

as “prediction markets”, a traditional example being the odds market at racetracks, are a

well suited source of data for such an analysis. In the first part of the paper, we developed a

general equilibrium model with heterogeneous information, heterogeneous preferences, and

rational expectations, to explain the relationship between the probabilities and prices of the

uncertain events that define a prediction market. It was found that the key determinant to

this relationship is the distribution of preferences. In the second part of the paper, we set out

to estimate the distribution of preferences amongst bettors at American racetracks using odds

data from a three year span at all American racetracks. We develop our empirical machinery

(nonparametric identification and a maximum likelihood estimator) under the assumption of

“one dimensional” preference heterogeneity, which when augmented by the expected utility

hypothesis, explains the favorite longshot bias as the result of trade between risk averters

(who bet on the top favorite in a race) and risk lovers (who spread themselves out over

the remaining horses). Finally, we estimate the distribution of risk attitudes using both the

expected utility approach and the probability weighting approaches to describing preferences

for risk, and find strong evidence that the former rather than the latter is the more accurate

description of bettor preferences. Future research aims at estimating our structural model

under multidimensional preference heterogeneity, and estimating risk preferences in different

market settings, using for example Tradesports contract data.
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8 Appendix : Proof of Existence and Uniqueness of the

Fully Revealing Rational Expectations Equilibrium

In order to prove Theorem 2.6 and Theorem 2.7, we first establish a series of intermediate

results on the behavior of the market share functions given our assumptions on the prefer-

ences.

Lemma 8.1 If PV is continuous, then for any finite set of gambles G with at least one

gamble having nonzero probability of winning,

PV (Si ∩ Sj) = 0 for every i 6= j.

Proof If pi = 0, then Si = ∅ because each V ∈ V is strictly minimized at p = 0. Otherwise,

pi > 0, and for i 6= j, Si ∩ Sj is a subset of

{V ∈ V : V (Ri, pi) = V (Rj, pj)},

which by continuity has measure 0 under PV .

Lemma 8.2 If PV is continuous, then for any finite set of distinct gambles G with at least

one gamble in G having nonzero probability of winning, the sum of the market shares equals

1, i.e.,
n∑

i=1

qi(R1, . . . , Rn; p1, . . . , pn) = 1.

Proof Recall that
n∑

i=1

qi(R1, . . . , Rn; p1, . . . , pn) =
n∑

i=1

PV (Si).
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Moreover, since G is finite, each V ∈ V attains a maximum over G, and thus

n⋃
i=1

Si = V.

However by Lemma 8.1, we have that for all i 6= j,

PV (Si ∩ Sj) = 0.

Thus
n∑

i=1

PV (Si) = PV

(
n⋃

i=1

Si

)
= 1.

Lemma 8.3 If PV is continuous, then for any n-tuple of distinct probabilities (p1, . . . , pn),

qi(R1, . . . , Rn; p1, . . . , pn)

is a continuous function in (R1, . . . , Rn) ∈ Rn. Furthermore, for any n-tuple of distinct

returns (R1, . . . , Rn),

qi(R1, . . . , Rn; p1, . . . , pn)

is a continuous function in (p1, . . . , pn) ∈ ∆n−1.

Proof We prove the first part of the theorem (continuity in (R1, . . . , Rn)). The second part

(continuity in (p1, . . . , pn)) follows similarly to the first.

Let us fix any n-tuple of distinct probabilities (p1, . . . , pn). Now consider any n-tuple of

returns (R1, . . . , Rn). Define a function F : V → {0, 1} as

F (V ) =
∏
j 6=i

1 [V (Ri, pi) ≥ V (Rj, pj)] ,
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where 1(·) is the indicator function. Then clearly

qi(R1, . . . , Rn; p1, . . . , pn) =

∫
F (V )PV (dV ).

Now consider any sequence of n-tuples of returns {(Rt
1, . . . , R

t
n)}t∈N+ that converges to

(R1, . . . , Rn). For each t ∈ N+, define F t : V → {0, 1} as

F t(V ) =
∏
j 6=i

1
[
V (Rt

i, pi) ≥ V (Rt
j, pj)

]
,

and thus,

qi(R
t
1, . . . , R

t
n; p1, . . . , pn) =

∫
F t(V )PV (dV ).

We need to establish that qi(R
t
1, . . . , R

t
n; p1, . . . , pn)

t→ qi(R1, . . . , Rn; p1, . . . , pn).

For every V ∈ V − Si we have F (V ) = 0. Thus for every V ∈ V − Si,

V (Ri, pi) < V (Rj, pj) for some j 6= i.

By continuity of every utility function V ∈ V, we have that for every V ∈ V − Si,

F t(V )
t→ F (V ).

On the other hand, for every V ∈ Si, F (V ) = 1. Since at least one pi > 0, then by

Lemma 8.1, for almost every V ∈ Si,
9

V (Ri, pi) > V (Rj, pj) for every j 6= i.10

9The statement “for almost every V ∈ Si” means “for all V ∈ Si except possibly in a subset S ⊂ Si with
PV (S) = 0”.

10Si = {V ∈ V : V (Ri, pi) > V (Rj , pj) for every j 6= i} ∪j 6=i (Si ∩ Sj).
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Once again, by continuity of every utility function V ∈ V, we have that for almost every

V ∈ Si,

F t(V )
t→ F (V ).

Thus for almost every V ∈ V, F t(V ) converges pointwise to F (V ). By Lebesgue’s

dominated convergence theorem,

qi(R
t
1, . . . , R

t
n; p1, . . . , pn)

t→ qi(R1, . . . , Rn; p1, . . . , pn).

The proof of continuity in (p1, . . . , pn) follows similarly. The requirement in the theo-

rem that (p1, . . . , pn) range over ∆n−1 is overly restrictive. it is only used to ensure that

(p1, . . . , pn) ∈ ∆n−1 implies at least one pi > 0, which allows all the steps from continuity in

returns to be repeated.

We now state a definition.

Monotonicity For any n-tuple of distinct probabilities (p1, . . . , pn), any n-tuple of returns

(R1, . . . , Rn), and any strict subset I ⊂ {1, . . . , n}, consider a change to the returns from

winning appearing in the choice set G that weakly increases the returns of the gambles

indexed by I and weakly decreases the returns of the remaining gambles. This change leads

to a new choice set G∗ = {(R∗
i , pi)}i∈{1,...,n} with

R∗
i ≥ Ri for i ∈ I

and

R∗
i ≤ Ri for i /∈ I.

We say that the distribution of consumer preferences PV satisfies monotonicity in return if

the sum of the shares of the gambles indexed by I weakly increase as a result of the change in
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returns, and the sum of the shares of the gambles indexed by {1, . . . , n}− I weakly decrease

as a result of the change in returns. That is

∑
i∈I

q∗i ≥
∑
i∈I

qi

and ∑
i/∈I

q∗i ≤
∑
i/∈I

qi.

Remark The definition of monotonicity in probability is stated similarly, except for any n-

tuple of distinct returns (R1, . . . , Rn), and any n-tuple of probabilities (p1, . . . , pn) ∈ ∆n−111,

we consider a weak increase of the probabilities of winning of the gambles for a strict subset of

the gambles, and a weak decreases of the probabilities of winning for the remaining gambles,

producing a new n-tuple of probabilities (p∗1, . . . , p
∗
n) ∈ ∆n−1. The distribution PV satisfies

monotonicity in probability if such a change results in an increase in the of sum the shares

of the gambles for which the probabilities increased, and a decrease in the sum of the shares

of the gambles for which the probabilities decreased.

Lemma 8.4 If PV is continuous, then it satisfies monotonicity in return and monotonicity

in probability.

Proof We prove the theorem for monotonicity in returns. A similar argument follows for

monotonicity in probability. Let (p1, . . . , pn), (R1, . . . , Rn), and (R∗
1, . . . , R

∗
n) be the n-tuples

described in the definition of monotonicity. Similarly to the proof of Theorem 8.3, define

Fi(V ) =
∏
j 6=i

1 [V (Ri, pi) ≥ V (Rj, pj)] and F ∗
i (V ) =

∏
j 6=i

1
[
V (R∗

i , pi) ≥ V (R∗
j , pj)

]
.

11We restrict the domain of n-tuple of probabilities to the simplex so as to ensure at least one probability
is nonzero.
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By the linearity of the integral operation

∑
i∈I

qi(R1, . . . , Rn; p1, . . . , pn) =

∫ ∑
i∈I

Fi(V )PV (dV )

and ∑
i∈I

qi(R
∗
1, . . . , R

∗
n; p1, . . . , pn) =

∫ ∑
i∈I

F ∗
i (V )PV (dV ).

Since at least one pi > 0, then by Lemma 8.1, for almost every V ∈ V,
∑

i∈I Fi(V ) equals 0 or

1.12 However by the monotonicity of each V ∈ V,
∑

i∈I Fi(V ) = 1 implies
∑

i∈I F ∗
i (V ) ≥ 1.

Thus for almost every V ∈ V,

∑
i∈I

F ∗
i (V ) ≥

∑
i∈I

Fi(V )

and since the integral is an increasing linear operation,

∑
i∈I

qi(R
∗
1, . . . , R

∗
n; p1, . . . , pn) ≥

∑
i∈I

qi(R1, . . . , Rn; p1, . . . , pn).

Lemma 8.5 Consider any n-tuple of distinct, nonzero probabilities (p1, . . . , pn), and any

subset I ⊂ {1, . . . , n}. If {(Rt
1, . . . , R

t
n)}t∈N is a sequence of n-tuples of returns with {Rt

i}t∈N

for i ∈ I nondecreasing and converging to ∞, and {Rt
i}t∈N for i /∈ I converging to R̄i, then

then there exists a positive integer M such that for all t > M ,

∑
i∈I

qt
i > 0.

That is, at least one of the gambles indexed by I has a market share greater than 0 for all

n-tuples of returns far along enough in the sequence.

12The set of V for which
∑

i∈I Fi(V ) > 0 equals ∪i 6=j;i,j∈I(Si ∩ Sj)
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Proof Consider fixing Ri = R̄i for i /∈ I, and let the returns for the gambles indexed by

i ∈ I follow the sequence {Rt
i}t∈N. The resulting sequence of market shares, which we denote

as q̄t
i can be shown by desirability and monotonicity in return to satisfy

lim
t→∞

∑
i∈I

q̄t
i > 0.13

Thus there exists a positive integer N such that for all t ≥ N ,

∑
i∈I

q̄t
i > 0.

In particular then, ∑
i∈I

q̄N
i > 0.

Since the qi functions are continuous in the n-tuple of returns, we can find an ε > 0 such

that |R̂i − R̄i| < ε for all i /∈ I implies

∑
i∈I

q̂N
i > 0.

By assumption we can find an N ′ such that t > N ′ implies |Rt
i− R̄i| < ε for all i /∈ I. Taking

M = max{N, N ′} thus ensures that t > M implies

∑
i∈I

qt
i > 0.14

8.1 Proof of Theorem 2.6

We prove the result in three steps. In the first step, we introduce an upper bound R̄ on

the odds payable by a gamble in the market, and show that an equilibrium exists under

13Once again we know by monitinicity in return that the limit exists.
14More precisely, t > M implies

∑
i∈I qi(Rt

I, R
t
−I) ≥

∑
i∈I qi(RN

I , Rt
−I) > 0
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this restriction by Brouwer’s fixed point theorem. This follows from continuity of PV which

drives the continuity of the qi. In the second step, we show that it is always possible to

raise the upper bound R̄ high enough such that it is not binding in equilibrium, and thus

an equilibrium of the form (4) exists. This result is driven by the desirability assumption.

Lastly we show that the equilibrium is unique, which is driven by monotonicity in return (a

consequence of continuity).

We shall assume there is an upper bound R̄ on the net returns payable by a gamble.

Under this “restriction” to the parimutuel mechanism, the the market shares si determine

the market returns R̄i through

R̄i(si) = min

(
1− τ

si

− 1, R̄

)
.

Thus whenever si ≤ (1− τ)/(1 + R̄), the restriction R̄ on the odds is binding.

Since the return vector (R̄(s1), . . . , R̄(sn)) is clearly a continuous function of the market

shares (s1, . . . , sn), and since the market share function qi are continuous in returns by

Theorem 8.3, we have f : ∆n−1 → ∆n−1 given by

fi(s1, . . . , sn) = qi(R̄(s1), . . . , R̄(sn); p1, . . . , pn) for i = 1 . . . , n,

is a continuous function. By the Brouwer fixed point theorem, the map f has a fixed point

(s̄1, . . . , s̄n), which is thus an equilibrium of the restricted parimutuel market.

If the upper bound R̄ is not binding for any of the s̄i, then clearly the fixed point satisfies

the property (4) of being an equilibrium in the unrestricted parimutuel market. We now

show that it is possible to raise the bar R̄ sufficiently high so that it is not binding for the

corresponding restricted equilibrium (s̄1. . . . , s̄n).

Suppose that this was not true. Then there exists a sequence of upper bounds {R̄t}

monotonically converging to ∞ with a corresponding sequence of equilibria {(s̄t
1, . . . , s̄

t
n)} ⊂
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∆n−1 where for each t the upper bound R̄t is binding for at least one s̄i. Since this sequence of

market shares lives in a compact space, we can find a convergent subsequence {(s̄tk
1 , . . . , s̄tk

n )}

converging to (s̄1, . . . , s̄n), with s̄i = 0 for at least one i (which follows from the fact that

the restriction is binding for each tk).

Let I ⊂ {1, . . . , n} be the strict subset of indices i for which s̄i = 0. Then for each

i ∈ I, the sequence {R̄(s̄tk
i )} converges to ∞,15 and without loss of generality we can say it

converges to ∞ monotonically.16

However by desirability, this situation is not possible. It would be mean that there is a

sequence of n-tuples of returns {(Rm
1 , . . . , Rm

n } with {Rm
i } monotonically converging to ∞

for i ∈ I and {Rm
i } converging to finite Ri for i /∈ I, and

lim
m→∞

∑
i∈I

qi(R
m
1 , . . . , Rm

n ; p1, . . . , pn) = 0,

which contradicts lemma 8.5. Thus it must be the case that we can find a large enough

upper bound R̄ such that R̄ is not binding for the equilibrium (s̄1, . . . , s̄n). These market

shares thus satisfy the condition for (s∗1, . . . , s
∗
n) in (4). Moreover, these equilibrium market

shares must also be located in the interior of ∆n−1 (because R̄ is non-binding), i.e., s̄i > 0

for all i. It also follows that since the probability distribution (p1, . . . , pn) involved distinct

probabilities, the equilibrium market shares (s̄1, . . . , s̄n) must be distinct, since otherwise

one gamble in the market would dominate another, thereby causing the latter to have zero

market share, which would contradict the fact the equilibrium shares lies in the interior of

the simplex.

We now address uniqueness. Suppose that there exist two n-tuples of market shares

15Since min
(

1−τ

s
tk
i

− 1, R̄tk

)
goes to ∞.

16We can always take a subsequence to assure monotonic convergence
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(s̄1, . . . , s̄n) and (s∗1, . . . , s
∗
n) that satisfy the equilibrium condition (4). Then for i = 1, . . . , n,17

s̄i = qi(R(s̄1), . . . , R(s̄n)) and s∗i = qi(R(s∗1), . . . , R(s∗n)).

Since both equilibrium tuples are located in the simplex, it must be the case that for some

nonempty strict subset I ⊂ {1, . . . , n}, s∗i ≤ s̄i for all i ∈ I with a strict inequality for at

least one i ∈ I, and and s∗i ≥ s̄i for all i /∈ I with a strict inequality for at least one i /∈ I.

This implies that ∑
i∈I

s∗i <
∑
i∈I

s̄i,

However we also have that R(s∗i ) ≥ R(s̄i) for i ∈ I and R(si) ≤ R(s̄i) for i /∈ I, which by

monotonicity in return of PV , implies that

∑
i∈I

s∗i ≥
∑
i∈I

s̄i.

This is a contradiction, and thus the equilibrium is unique.

8.2 Proof of Theorem 2.7

Since the R∗
i are assumed distinct, and PV satisfies continuity, then we that for any (p1, . . . , pn) ∈

∆n−1,
n∑

i=1

s∗i − qi(R
∗
1, . . . , R

∗
n; p1, . . . , pn) = 0.18 (16)

Furthermore, by continuity once again, qi(R
∗
1, . . . , R

∗
n; p1, . . . , pn) is continuous in (p1, . . . , pn)

over ∆n−1. Now consider the following continuous self map over ∆n−1 (where for simplicity

17We suppress the probabilities (p1, . . . , pn) in the following notation because they remain the same.
18Note that

∑
s∗i = 1 because the si are (observed) market shares.
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we write R∗ = (R∗
1, . . . , R

∗
n)). For (p1, . . . , pn) ∈ ∆n−1,

pi 7→
pi + max(0, s∗i − qi(R

∗; p1, . . . , pn))∑n
j=1(pj + max(0, s∗j − qj(R∗; p1, . . . , pn)))

for i = 1, . . . , n. (17)

By the Brouwer fixed point theorem, this map must have a fixed point (p∗1, . . . , p
∗
n) ∈ ∆n−1.

Moreover, this fixed point must satisfy qi(R
∗, p∗1, . . . , p

∗
n) = s∗i for i = 1, . . . , n. If these

are equalities are not satisfied, then by (16) we have that for at least one i we have s∗i >

qi(R
∗, p∗1, . . . , p

∗
n), and for at least one j we have s∗j < qj(R

∗, p∗1, . . . , p
∗
n). Thus

n∑
i=1

p∗i + max(0, s∗i − qi(R
∗, p∗1, . . . , p

∗
n)) > 1,

and under the the mapping (17), p∗j must get sent to a strictly smaller number, which violates

the fact that (p∗1, . . . , p
∗
n) is a fixed point. Thus (p∗1, . . . , p

∗
n) solves (6)).

Since each s∗i is nonzero and distinct, it must be the case that each p∗i is nonzero and

distinct. Otherwise some gamble, indexed by i say, would be dominated (either it has zero

probability or it has the same probability as another gamble but lower return), and thus

qi(R
∗, p∗1, . . . , p

∗
n) = 0, which is inconsistent with the fact the market share of the ith gamble

is s∗i > 0.

The uniqueness of (p∗1, . . . , p
∗
n) follows from monotonicity in a manner parallel to that

used in proving the uniqueness in Theorem 2.6, except exploiting monotonicity in probability

instead of monotonicity in return (both of which recall follows from continuity).
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