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Abstract
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1 Introduction

Information mechanisms attempt to aggregate diffuse private information in a manner that will be useful

to decision makers. This generally takes the form of generating a posterior distribution over some set

of outcomes that, ideally, makes full use of the private information of a number of different agents. In

recent years theoretical, experimental, and field research has sought to determine the effectiveness of such

mechanisms. While evidence along all dimensions is mixed, the basic theme of the literature is that theory

suggests certain types of mechanisms cannot work, while experimental evidence indicates that they do work.

Furthermore, different information mechanisms exist, and the characteristics of each mechanism are relevant

for their performance, both in theory and in practice. In particular, there is ample reason to believe that

certain mechanisms tend to fail in potentially seriously misleading ways when conditions are not ideal; when

traders are informationally large or the underlying problem is complicated information mechanisms may

exhibit a breakdown in trade where no information is revealed, a confused outcome where the results of

the mechanism are incompatible with reasonable prior beliefs, or mirages, where the mechanism suggests a

reasonable result that is in fact at odds with the aggregate signal available to agents.

This experimental study compares the performance of four information mechanisms that have received

study. The classic information mechanism, and one studied here, is the double-auction-style market for

securities that pay off when a specified event occurs. The early work on information mechanisms generally

focuses on such markets (Forsythe et al., 1982; Plott and Sunder, 1982, 1988). This mechanism has proved

successful under certain conditions in achieving a fully informative rational expectations equilibrium. This

result holds despite the fact that the market should suffer from a no-trade problem, indicating that theoretical

results are at odds with experimental outcomes. Additionally, when a market has few traders relative to the

number of securities, it may suffer from a thin markets problem. Trading may not be sufficiently active in

enough securities to meaningfully aggregate agents private information.

Also considered is a parimutuel betting system, where individuals purchase tickets associated with an

event and, when said event occurs, receive a payoff determined by the ratio of tickets for that event sold to

total tickets sold. This mechanism also should suffer from the no-trade problem that must be overcome with

a subsidy (Plott et al., 2003). However, ample evidence from real world parimutuels demonstrates not only

that trade occurs even in the presence of a negative subsidy in the form of the track take, but also that the

odds implied by betting behavior are closely related to the underlying probabilities and robust to attempts

at market manipulation (Camerer, 1998). These odds do, however, tend to suffer from the famous favorite-

longshot bias (Snowberg and Wolfers, 2006). More troubling, Plott et al. (2003) and Roust and Plott (2005)

find evidence that parimutuel prediction markets are prone to mirages; they can send relatively strong signals
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about the aggregate posterior probabilities that are at odds with the actual posterior that an agent with

access to all private information would form.

An iterative poll similar to that used in McKelvey and Page (1990) is also tested. In this poll, subjects

are paid based on the quality of the average report in the last period. There is no concern about a no-trade

problem. However, McKelvey and Page (1990) find incomplete information aggregation in this environment,

so it is not clear that iterative polling is effective in practice.

Finally, a relative newcomer to the information mechanism family is considered. The market scoring

rule mechanism, which is the only mechanism designed specifically for the aggregation of diffuse private

information (Hanson, 2003), allows each subject to move a publicly observed probability based on his private

information. The payoffs are designed such that it is incentive compatible for agents to reveal their private

information if agents act in isolation.1 This mechanism, however, requires a patron; it is not self-funding

like a parimutuel or a double auction market. And, the experimental evidence on the market scoring rule to

date indicates that it does not perform as well as theory would predict.

Each mechanism is applied to the same information aggregation problems. The goal of the experiments

is to determine which mechanisms will be useful in a variety of potential applications where the number of

informed traders may be small, individual traders may have large information size, and problems may be

more complex than the standard draws from an urn used in much of the literature. To accomplish this,

sessions all involve only three subjects. Subjects receive random draws of private information of varying

degrees of informativeness. Consequently, traders will be generally informationally large. Furthermore, half

of the sessions involve a difficult mapping from private information to underlying states of the world to

realized outcomes. This presents challenges to the mechanisms beyond the obvious that individuals may

have difficulty interpreting their private signal. All of these mechanisms rely in part on an iterative element

where information revealed by other agents’ actions is used to update beliefs; when these actions are hard to

interpret the assumption that agents update as perfect Bayesians becomes even more unrealistic than usual.

The null hypothesis maintained throughout the experiment is that the degree and quality of information

aggregation is invariant in the information mechanism chosen. If instead the idiosyncratic characteristics of

each mechanism interact in a consistent manner with the heuristics subjects use to deal with the difficult

information problem or the difficulties encountered with informationally large agents, certain mechanisms

will perform better than others.

Our results indicate that the double auction market performs best when the information problem is

simple, while the iterative poll outperforms other mechanisms when the problem is relatively complicated.

1If players anticipate that others will observe and react to their announcements, then they may have an incentive to
misrepresent their information early to affect the path of play.
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The market scoring rule, despite its theoretical advantages, performs poorly in all treatments, while the

parimutuel performs reasonably well when subjects choose to trade but often results in periods with a total

breakdown in trade. These results indicate that the appropriate information mechanism for a given problem

will depend upon characteristics of the problem; theoretical and experimental work is necessary to further

explore the performance of different mechanisms and to understand the causes for success and failure in

various scenarios.

2 Notation and Definitions

The set of traders is I = {1, . . . , I}, where I = 3 for our experiments. The set of states of the world is Θ×Ω,

where θ ∈ Θ represents a possible randomizing device (in our case, this is either a single coin or a possible

ordering of three coins) and ω ∈ Ω represents a possible outcome of the randomizing device (e.g., heads or

tails.) In our ‘2-coin’ experiments, Θ = {X, Y } (coin X and coin Y ) and Ω = {H, T } (heads or tails.) In

the ‘3-coin’ experiments,

Θ = {XY Z, XZY, Y XZ, Y ZX, ZXY, ZY X}

(the possible orderings of coins X , Y , and Z,) and

Ω = {TTT, TTH, THT, THH, HTT, HTH, HHT, HHH}

(the possible outcomes of flipping the three coins, where HHT means the first two coins came up heads and

the third came up tails, for example.) From now on, we refer to these as the 2-state and 8-state experiments,

respectively, to reflect the size of Ω.

Let f(θ, ω) be the joint distribution over all states of the world, let f(θ) be the marginal distribution

on Θ, and let f(ω|θ) be the conditional distribution on Ω given θ ∈ Θ. In other words, if I know the coin

ordering is θ, then I know the probability that the coin flip will be ω is f(ω|θ). Tables 1 and 2 completely

describe the distribution f used in our experiments for the 2-state and 8-state cases, respectively.

The objects of interest are agents’ beliefs over Ω, which are determined indirectly by beliefs over Θ. In

general, beliefs over Θ will be denoted with a q, beliefs over Ω will be denoted with a p, and they will always

be related according to the formula

p(ω) =
∑

θ∈Θ

q(θ) f(ω|θ). (1)

Before any information is revealed, agents share a common prior over Θ of q0 given by q0(θ) = f(θ). Using

equation (1), q0 induces a prior p0 over Ω.
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Subjects see signals that give them information about θ. They then use this information (and the

correlation structure in f) to derive a posterior over Ω via Bayes’s Rule. Specifically, agent i sees signal

si = (si1, . . . , sik, . . . , siKi
),

where each sik is an element of Ω. Letting θA represent the true (‘actual’) coin ordering, each sik is

independently drawn from Ω according to f(·|θA). In other words, subject i sees Ki independent coin flips

from the true coin ordering. Note that Ki may not equal Kj for i 6= j, so agents may be differentially

informed. Abusing notation slightly, let f(si|θ) be the probability that signal si was generated given coin

ordering θ. Then, by Bayes’s Law, i’s posterior over Θ is

q(θ|si) =
f(si|θ) f(θ)∑

θ′∈Θ f(si|θ′) f(θ′)
,

which induces a posterior p(·|si) over Ω via equation (1). For brevity, we denote these distributions as qi(θ)

and pi(ω), respectively. The distributions pi are called the individual posteriors.

‘Full information’ refers to observing the entire signal s = (s1, . . . , si, . . . , sI). Using the same math as

above, we can construct q(θ|s) and p(ω|s), which we can denote by qF and pF . The distribution pF is the

full-information posterior.

If the true coin ordering were known to be θ (which would almost always occur, for example, as Ki

approaches infinity,) then the posterior on Ω would be pθ(ω) = f(ω|θ). We refer to each pθ as a limit

posterior since (with probability one) it is the limit of the sequence of individual posteriors as Ki grows

without bound. The distribution pA = pθA

is the true limit posterior since it is the posterior if the true

coin ordering were known.

Given s, the maximum likelihood value of θ is

θML(s) = argmax
θ∈Θ

f(s|θ).

To shorten notation, we let θML
i = θML(si), pML = pθML(s) and pMLi = pθML

i . The distributions pML and

pMLi are the maximum-likelihood (ML) posterior and individual ML posterior, respectively.

Regardless of s, it must be that the prior p0, the individual posteriors pi, the maximum likelihood

posteriors pML and pMLi, and the full-information posterior pF are all elements of the convex hull of the

limit posteriors, denoted by P = co({pθ}θ∈Θ). Since each of these distributions lives in R
N when there are

N states, we can think of them as N -vectors (or (N − 1)-vectors since they sum to one.) For example, if
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Ω = {ω1, . . . , ωn, . . . , ωN}, then pθ = (pθ
1, . . . , p

θ
N ), where pθ

n = pθ(ωn). In our experiment, P = [.2, .4] when

N = 2.When N = 8, note that pθ
1 and pθ

N are independent of θ, so P ⊆ R
5 (two dimensions are fixed and

the remaining six dimensions must sum to a known constant, so five degrees of freedom remain).

We will abstract away from the details of the mechanisms themselves. Instead, we say that a mechanism

begins at some prior distribution h0 over Ω and ends at some distribution h over Ω. The final distribution

h is called the mechanism output distribution, or simply output distribution. To discuss dynamics,

we say that the mechanism generates a sequence of distributions {ht}T
t=0 where t ∈ [0, T ] indexes time,

h0 is the prior distribution and hT = h. Information aggregation occurs when the output distribution

matches (or when ht converges toward) the full information posterior (h = pF .) A mirage occurs when the

output distribution matches (or when ht converges toward) a limit posterior pθ that is not ‘close to’ the full

information posterior, although the details of this definition are still vague.

If we want to dive into the details of the mechanism, let Xt
i be i’s strategy space at time t and xt

i be

i’s chosen strategy. The path of play for i is then xi = (x0
i , x

1
i , . . . , x

T
i ). Let xt = (xt

1, . . . , x
t
i, . . . , x

t
I) and

x = (x1, . . . , xT ). At each t, ht is a function of {xs}t
s=1, so we should write ht(ω; x1, . . . , xt). Payoffs to

players are then given by πi(xi, x−i; ω
A), which may also be written as πi(h

0, . . . , hT ; ωA), or sometimes just

πi(h; ωA) when only the final distribution matters.

In order to talk about information aggregation and mirages, we need a notion of distance between the

output distribution and some target distribution, such as pF . The Kullback-Leibler distance between a ‘true’

distribution p and another distribution h is given by

KL(h, p) =
∑

ω∈Ω

p(ω) [log p(ω) − log q(ω)].

The KL distance, introduced by Kullback and Leibler (1951), is based on informational entropy (Shannon,

1948), but is not symmetric and does not satisfy the triangle inequality, so it is not a proper distance metric.

As an alternative, one could measure the distance between p and h via the (normalized) lρ-norm for any

ρ ∈ {1, 2, . . .} ∪ {∞}, where

lρ(h, p) = (|Ω|ρ−1
∑

ω∈Ω

|p(ω) − h(ω)|ρ)1/ρ.2

We normalize by |Ω|(ρ−1)/ρ (where |Ω| denotes the number of states in Ω) so that the values of the norm lie

roughly on the same scale regardless of the number of states.3 The ε-neighborhood of a distribution p under

lρ is given by N ε
ρ (p) = {q : lρ(q, p) < ε}.

3Under this normalization, if each component of p−h is equal to 1/|Ω| then lρ(h, p) = 1 regardless of |Ω|. This normalization
is only for convenience in scaling our data; we will never compare distances between 2-state and 8-state experiments.
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Finally, we might assume there is some decision maker who takes the mechanism output and chooses an

action y ∈ Y . His payoff is u(y, ωA), where ωA is the ‘true’ coin flip. For our purposes, ωA is never observed

(or generated,) so we take the expected payoff either using the full-information posterior,

UF (y) =
∑

ω∈Ω

pF (ω)u(y, ω),

the true limit posterior,

UA(y) =
∑

ω∈Ω

pA(ω)u(y, ω),

the maximum likelihood limit distribution,

UML(y) =
∑

ω∈Ω

pML(ω)u(y, ω),

or any other distribution over Ω. Let yF , yA, and yML be the maximizers of UF , UA, and UML, respectively,

and note that yF and yML are functions of s and yA is a function of θA. The decision maker does not know

s or θA, and so cannot use yF , yA, or yML. Instead, he chooses y to maximize

U(y, h) =
∑

ω∈Ω

h(ω)u(y, ω),

where h is the mechanism output. Let y∗(h) be the maximizer of U(y, h).

Given u, we can calculate the decision maker’s ex-ante expected loss, relative to the full-information

posterior, to be

LF (h) =
∑

θ

∑

s

∑

ω

[u(yF (s), ω) − u(y∗(h(s)), ω)] f(s|θ) f(ω|θ) f(θ).

Other loss measures can be similarly constructed using other benchmarks, such as yA, or using different

levels of information, such as interim or ex-post expected losses.

3 The Mechanisms

We experimentally compare four mechanisms in the above environment: The double auction, pari-mutuel

betting, iterated polls, and a market scoring rule. In each period, subjects begin with the prior beliefs given

by f in Tables 1 and 2. A true coin ordering θA is drawn, but not revealed to the subjects. Instead, each

subject is privately shown a signal si from f(·|θA). The mechanism is then run and the outcome distribution

h is observed. After the period ends, traders are told the true state θA. Subjects’ payments then depend
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on the true state ωA. Since ωA is drawn from f(·|θA), subjects’ payments are subject to variation through

the variation in the draw of ωA. To reduce this variation, we draw 500 ‘true’ states, (ωA,1, . . . , ωA,500), and

calculate the frequency with which each state is drawn:

φ(ω) =
#{r : ωA,r = ω}

500
.

Each subject is then paid

π(x; φ) =
∑

ω∈Ω

φ(ω)π(h; ω).

This approximates the expected payment when θA is known and ωA is not:

Eπ(h; θA) =
∑

ω∈Ω

f(ω|θA)π(h; ω).

3.1 Double Auction

In the double auction mechanism, N state-contingent securities (one for each ωn ∈ Ω) are traded in separate

markets. Subjects buy and sell each security in a standard computerized double auction format with an

open book (where all bids and asks are public information.) Traders are initially endowed with cash, but no

assets; those who want to sell an asset do so by selling short and holding negative quantities. At the end of

the trading period, each asset n is worth φ(ωn). Traders who own a positive quantity of asset n receive φ(ωn)

experimental dollars per unit, and traders who hold a negative quantity of asset n pay φ(ωn) experimental

dollars per unit.

Under a rational expectations equilibrium, asset prices are fully revealing, meaning that the full infor-

mation posterior can be calculated from the vector of prices. Under certain assumptions about preferences,

the prices should in fact equal the full information posterior probabilities, and so we set hn in our analysis

equal to the closing price of the state-n security.

One issue with the double auction, however, is that it is a zero-sum game in which the agreeing-to-disagree

theorem of Aumann applies, so we should not expect trade in equilibrium with risk averse agents. Whether

trade occurs and whether prices equilibrate to the full information posterior are questions to be addressed

in the laboratory.

3.2 Pari-mutuel Betting

In pari-mutuel betting, traders buy ‘tickets’ or ‘bets’ on each of the N possible states. Tickets cost one

experimental dollar each and a trader can buy as many tickets of each type as he can afford. During the
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period, the number of tickets of each type that has been purchased is displayed publicly. At the end of the

period, the total number of tickets purchased of each type, denoted by (T 1, . . . , T n), is used to calculate the

payoff odds for each state. Payoff odds for state ωn equals the inverse of the proportion of state-n tickets

purchased, or

On = (
T n

∑N
m=1 T m

)−1.

If subject i owns T n
i state-n tickets, then his total payoff is

πi(T
1
i , . . . , T n

i ; φ) =

N∑

n=1

T n
i φ(ωn)On.

As in the double auction, this mechanism is a zero-sum game, and so risk-averse agents should not

buy tickets. Conditioning on trade, however, the payoff odds on each ωn should converge to (pF
n )−1, the

full-information posterior.4 Thus, we set hn = 1/On.

3.3 Iterative Polls

Under iterative polls, subjects are simply asked to report a probability distribution over Ω. These reports

are averaged across subjects and the average report is publicly displayed. Subjects then re-submit a new

probability distribution and the new average is displayed. This process repeats five times. Letting, hn be

the average probability report on ωn in the fifth poll, each subject i is given T n
i (hn) state-n ‘tickets’, where

T n
i (hn) =

N∑

n=1

[ln(hn) − ln(1/N)].

Note that T n
i (hn) is positive if hn > 1/N and negative if hn < 1/N . Each state-n ticket is then worth φ(ωn).

Thus,

πi(h; φ) =

N∑

n=1

φ(ωn)T n
i (hn).

Under this payoff formula, we conjecture the existence of an equilibrium in which agents fully reveal their

information by the final period, leading to full information aggregation, although it remains to verify the

details of this equilibrium. Note that all subjects receive the same number of tickets and therefore receive

the same total payoff. Since total payoffs can be positive, this is not a zero-sum game and is therefore not

subject to the no-trade issues of the double auction and pari-mutuel betting system.

4This is only a conjecture at this point; we need to verify this argument.
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3.4 Market Scoring Rule

In the market scoring rule, a probability distribution h0 = (h0
1, . . . , h

0
N ) is publicly displayed at the beginning

of each period. In our experiments, h0
n = 1/N for each n. At any given time t during the period, any trader

may ‘move’ the distribution to a new distribution, ht. If a trader moves the distribution from ht−1 to ht,

then he receives (or loses)

T n
i (ht−1, ht) = ln(ht

n) − ln(ht−1
n )

state-n tickets for each n. Traders are given an initial endowment of tickets and cannot move ht−1 to some

ht if such a move would require surrendering more tickets of some state than the trader currently holds. This

prevents traders from moving probabilities arbitrarily close to zero, since the logarithm becomes infinitely

negative for arbitrarily small probabilities.

During the period, traders may move the probability distribution as many times as they like. With each

move, they gain and lose tickets appropriately. At the end of the period, h = hT and each state-n ticket is

worth φ(ωn), so

πi(h; φ) =

N∑

n=1

φ(ωn)T n
i ,

where T n
i is i’s final holdings of state-n tickets.

The market scoring rule is incentive compatible when subjects announce their reports in isolation, though

the properties of the equilibria of the dynamic multi-player game is still an open question. The mechanism

does not induce a zero-sum game, so trade should occur and converge to the full-information posterior if

information aggregates properly. Unlike the iterative polls, however, different traders can earn different

payoffs.

4 Experimental Design

We employ a 4 × 2 experimental design in which each of the four mechanisms described in Section 3 is run

in both the two-state and eight-state environments described in Section 2. Three agents are used in all eight

treatments. Each subject group participates in one mechanism for eight periods, followed by a different

mechanism for eight periods. We use a crossover design in which the ordering of mechanisms for one group

is then reversed for another group. Each ordering is run twice, for a total of 16 experimental sessions. Table

3 lists the details of each session.

All experiments were run at the California Institute of Technology using student subjects recruited via

E-mail. Each period lasted 5 minutes (or, for the iterative polls, until the five iterations were complete) and
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subjects earned an average of around thirty dollars per session.

5 Results

The results are organized as follows: First, we verify that period effects and order effects are not present,

which then allows us to aggregate data across periods and across mechanism orderings. We then examine

the results of the 2-state experiments, looking first at the accuracy of the mechanism output, relative to the

full information posterior benchmark. We also examine the frequency and severity of ‘catastrophic’ failures,

such as periods with no trade, mechanism output distributions that cannot be rationalized by Bayes’s Rule

(‘confused’ outcomes) and mechanism output distributions that move in a direction away from the full

information posterior (‘mirage’ outcomes). We then repeat these measures for the more complicated 8-state

experiments. Finally, we look to individual-level data for further understanding of the successes and failures

of each mechanism.

Throughout this paper we report distances using only the (normalized) l2 norm. Results for other distance

metrics are qualitatively similar.

5.1 Period and Order Effects

Although one might expect learning and experience to generate better performance in later periods, we do

not find strong evidence for this hypothesis. Using a Wilcoxon rank sum test for equality of medians, we

compare the distance for each period t against each period s 6= t. Aggregating across all mechanisms, we

cannot reject the hypothesis that the distances have equal medians for any pair of periods in the two-state

experiments or in the eight-state experiments. Thus, for example, the distribution of first-period distances

has approximately the same median as the distribution of last-period distances, indicating that no significant

learning takes place. This is clear from panels (A) and (B) of Figure 1. The same set of tests run on each

mechanism (rather than aggregating across all four mechanisms) fails to find significant evidence of learning.5

Finally, regressing the distance from the full information posterior on the period number results in a negative

but insignificant coefficient on the period number, further indicating that performance does not significantly

improve with experience.

Since subjects participate in one mechanism for eight periods and then a second mechanism for a sub-

sequent eight periods, some experience from the first mechanism may spill over into the second mechanism,

creating a mechanism ordering effect in our data. Comparing the distance between the mechanism output

5Specifically, of the 112 period-versus-period tests, we find that four are significant at the 5% level in the two-state experiments
and none are significant at the 5% level in the eight-state experiments.
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and the full information posterior for mechanisms run in the first eight periods versus those run in the final

eight periods reveals no discernible effect; aggregating across all four mechanisms, Wilcoxon tests reject a

significant difference in medians for both the two-state experiments (p = 0.820) and the eight-state exper-

iments (p = 0.850). The same tests run on each mechanism individually also find no significant effect (all

p-values are greater than 0.168). The plots in panels (C) and (D) of Figure 1 demonstrate this result.6

Since we find no significant period or ordering effects, we aggregate across all periods and both orderings

in subsequent analyses.

5.2 The Simple Environment: Two States

The two-state environment represents a relatively simple aggregation problem where one might expect mech-

anisms to be more successful at approximating the full information posterior.

5.2.1 Mechanism Accuracy

To determine which mechanisms are the most accurate, we perform a comparison of the mechanism error

(distance from the mechanism output to the full information posterior) between each pair of mechanisms.

For every given pair, we aggregate across all periods and orderings from the two-state experiments and

perform a Wilcoxon test on the resulting distributions of errors. From these comparisons we can construct

a ‘significance relation’ that ranks the four mechanisms according to the degree of error they generate.

Formally, we define the significance relation by A ≻ B if mechanism A generates significantly higher

error than B at the 10% significance level. Similarly, we define � by A � B if A has greater average error

than B (regardless of the statistical significance). Since ≻ is not negatively transitive (it is possible to have

‘not A ≻ B’ and ‘not B ≻ C’ but A ≻ C), describing the relation between mechanisms may require multiple

statements. In particular, we describe the results with a set of statements such that if a statement exists

of the form ‘A � . . . ≻ . . . � D’ then conclude that A ≻ D. If there is no such statement, conclude that

A 6≻ D. If ‘A � . . . � . . . � D’ or ‘A � . . . ≻ . . . � D’ exist then conclude that A � D. For example, from

the pair of statements ‘A � B � C � D and A ≻ C � D’ we conclude that the ordering of the average

errors is alphabetical and that A ≻ C and A ≻ D, but not A ≻ B.

The result of the pairwise comparison procedure is reported Table 4 and the distributions of errors for

each mechanism are shown in panel (A) of Figure 2. The average error for each mechanism is reported in the

second row and second column of the table; the Market Scoring Rule generates the most error on average

and the Double Auction generates the least. The p-values of the pairwise Wilcoxon tests are reported in

6Note that a crossover design was used, where each mechanism ordering is reversed in a later session. This would allow for
statistical control of any ordering effect, but no such effect has been found.
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columns three through five and rows three through five. No differences are significant at the 5% level, but

the Market Scoring Rule generates significantly higher error than both the Poll and the Double Auction at

the 10% level. From this, we generate the significance statements: ‘MSR � Pari � Poll � DblAuc and MSR

≻ Poll � DblAuc’. Thus, the Market Scoring Rule is the unique mechanism that generates significantly

higher error than some other mechanism. In other words, these results are not particularly conclusive about

which mechanism is the best (in terms of error), but the results are clear about which mechanism is the

worst.

5.2.2 Catastrophes: No Trade

In theory, we predict no trade (or indifference to trade) in the Double Auction and Pari-mutuel mechanisms

when agents are (weakly) risk averse. In practice (see the second row Table 5), we observe trade in each

of the 32 periods of the Double Auction, but no trade in four of the 32 periods (12.5%) of the Pari-mutuel

mechanism. Despite the fact that it is subsidized, thus circumventing the no-trade issue in theory, we do

observe one period of no trade in the Market Scoring Rule. Using a simple binomial test (which assumes

independence of no-trade periods) as a rough guide, we conclude that the Pari-mutuel mechanism generates

no-trade outcomes significantly more frequently than the other three mechanisms (with p-values of 0.008,

0.033, and 0.008 for the Double Auction, Market Scoring Rule, and Poll, respectively). From this we generate

the significance statement ‘Pari ≻ MSR � DblAuc = Poll’, indicating that the Pari-mutuel is uniquely the

worst mechanism in this setting.

Intuitively, we conjecture that subjects are prone to trade, whether rational or not, in the more familiar

Double Auction mechanism and are prone to confusion (and stagnation) in the unfamiliar and mathematically

complex Market Scoring Rule mechanism. As for the Pari-mutuel mechanism, debriefing discussions with

subjects indicated that several believed that first movers would be disadvantaged in this zero-sum game since

placing a wager may reveal valuable private information, allowing competitors to gain at the first mover’s

expense.7

5.2.3 Catastrophes: Mirages

Historically, a mirage refers to a situation where a mechanism’s output in a two-state environment leans

towards one state when the other is the true state. In more general environments, if p0 represents the prior

distribution, pFI the full information posterior given the signal s, and h the mechanism output, we define

7In several periods we do observe ‘meaningless’ trade where a trader submits a wager in the final second before the market
closes. If an individual is the only trader to place a wager in a Pari-mutuel mechanism, he faces no risk as long as he owns
at least one of each security. Thus, these trades are not informative (or financially consequential) and are discarded from the
analysis.
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a mirage as any h such that (pFI − p0) · (h − p0) < 0. Thus, a mirage occurs when the mechanism output

moves in the wrong direction from the prior, relative to the full information posterior. In this situation the

mechanism has not only failed to aggregate information properly, it is misleading the market observer into

believing that a different limit posterior is the maximum likelihood than she would believe had she observed

the entire signal s. A graphical representation of a mirage (for both two- and eight-state environments) is

provided in Figure 3.

The frequency of mirages for the two-state experiments is reported in the fourth row of Table 5. Although

all four mechanisms generate a substantial frequency of mirages (ranging from 31% to 44%), the differences

between mechanisms are largely insignificant except for marginal significance (p = 0.0549) when comparing

the Market Scoring Rule to the Pari-mutuel.8 Our significance statement for mirages is ‘MSR � DblAuc �

Poll � Pari and MSR ≻ Pari’, indicating that the Market Scoring is uniquely the worst in this setting.9

5.2.4 Catastrophes: Confusion

Recall that, regardless of the actual signal, the full information posterior must lie in the convex hull of the

limit posterior. If a mechanism’s output distribution lies outside the convex hull, it cannot be rationalized as

being generated from any possible signal. Consider a market observer who observes the mechanism output

and generates a posterior belief about the probabilities of the events in question. Observing an output

distribution outside the convex hull tells the market observer that the mechanism has somehow failed in that

it failed to converge to a sensible prediction, perhaps because some individuals were irrational or did not

properly employ Bayes’s Law. In this case the observer can infer little if any information from the mechanism

output. We refer to such a catastrophic failure as a ‘confused’ outcome. A graphical representation of

confused outcomes (for two and eight states) is provided in Figure 4.

The third row of Table 5 displays the number of periods in which confused outcomes occur in the two-

state experiments.10 Clearly the Poll is the most frequent; using a simple binomial test we conclude that

the Poll generates confused outcomes significantly more frequently than any of the other three mechanisms

(with p-values of 0.013, 0.048, and 0.026 for the Double Auction, Market Scoring Rule, and Pari-mutuel,

respectively). Thus, our significance statement regarding confusion is ‘Poll ≻ MSR � Pari � DblAuc’.11

8The number of mirages which are simultaneously confused outcomes (meaning the mechanism output moves outside the
convex hull of the limit posterior away from the full information posterior) is 0, 1, 1, and 3 for the Double Auction, Market
Scoring Rule, Pari-mutuel, and Poll, respectively.

9The binomial test between the Market Scoring Rule (with 14 mirages) and the Pari-mutuel generates a p-value of 0.0549.
10We do find that, across all mechanisms, confusion is significantly more likely to occur in the first period. No other period

effects have been observed.
11Conditional on observing a confused outcome, the average distance between h and the convex hull is 0.024, 0.171, 0.106,

and 0.052 for the Double Auction, Market Scoring Rule, Pari-mutuel, and Poll, respectively. Thus, the ‘magnitude’ of the
confusion in the Poll is less than in the Market Scoring Rule or Pari-mutuel, though it is not clear that this measure is relevant
since all confused outcomes lead to an inference failure, despite the magnitude.
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5.2.5 Summary

In each of our four measures (error, no trade, mirages, and confusion) we found one mechanism to be

uniquely bad and the others to be roughly equivalent. Specifically, the Market Scoring Rule generates the

most error, the Pari-mutuel generates the most no-trade periods, the Poll is the most frequently confused,

and the Market Scoring Rule creates mirages most frequently. The only mechanism that performed well in

all measures (or, did not perform poorly in any one measure) is the Double Auction mechanism.

A summary of the results appears in columns two through five of Table 11.

5.3 The Complex Environment: Eight States

5.3.1 Mechanism Accuracy

As with the two-state experiments, we measure a mechanism’s error as the l2 distance between the mechanism

output distribution and the full information posterior. The distribution of errors for each mechanism is

compared against that of each other mechanism using a Wilcoxon rank sum test. This pairwise comparison

procedure generates a significance ordering that ranks the mechanisms by their average errors. The result

of this procedure is reported in Table 6.

The accuracy results for the eight-state experiments can be summarized by the significance statement

‘DblAuc ≻ Pari ≻ MSR � Poll’, which indicates that the Double Auction is uniquely the worst mechanism

(according to this error measure), the Pari-mutuel is uniquely the second-worst, and the Market Scoring

Rule and Poll generate the lowest errors on average, with no significant difference between them.

5.3.2 Catastrophes: No Trade

In the eight-state experiments no-trade periods were observed only in the Pari-mutuel mechanism. One

group of subjects traded in none of the eight periods and another group failed to trade in only their fifth

period. Thus, the Pari-mutuel mechanism is uniquely the worst when ranked by the frequency of no-trade

periods.

5.3.3 Catastrophes: Mirages

Recall that we define a mirage to be a mechanism output distribution that lies in an opposite direction from

the prior as the full information posterior, or when the dot product between (h − p0) and (pFI − p0) is

negative. This is demonstrated in panel (B) of Figure 3.

Looking at the frequency of mirages (see Table 7), the Double Auction is most prone to mirage outcomes
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while the Poll is the least prone. Comparing the distribution of these dot products (which represent the

‘angle’ between the vectors) and applying pairwise Wilcoxon tests (see Table 8), we see that the Double

Auction is uniquely the worst mechanism in terms of the degree of mirages. A third way to measure the

incidence of mirages is simply to count the number of dimensions of (h− p0) that have the same sign as the

corresponding dimension of (pFI − p0), excluding the first and last dimension since, in theory, they should

not change. Table 9 reports the p-values of the pairwise Wilcoxon tests on the number of dimensions. The

results are in line with the other measures; the Double Auction is uniquely the most prone to mirages and

the other three mechanisms do not significantly differ in the frequency or magnitude of observed mirages.

5.3.4 Catastrophes: Confusion

Recall that an output distribution is labeled ‘confused’ if it does not lie in the convex hull of the limit

posteriors. In the eight-state case, distributions live in R
8 but since the first and last dimensions should

never differ from the prior, the convex hull lives in the six-dimensional subspace where those dimensions are

fixed at the prior level. Thus, an output distribution is automatically ‘confused’ if either the first or last

dimension differs from the prior. See Figure 4 for a simplified representation of this issue.

In practice, confusion occurs in every period under every mechanism in our eight-state experiments, so

indicating confusion with a binary indicator variable is not informative. Although any confusion leads to

difficulties in interpretation, we proceed by measuring the distance between the output distribution and the

convex hull. Using pairwise Wilcoxon tests (see table 10), we find that neither the Market Scoring Rule nor

the Poll have significantly greater median distances than any other mechanism, and that the Double Auction

and Pari-mutuel do have significantly greater median distances than at least one other mechanism. Thus,

the Market Scoring Rule and the Poll are less prone to large deviations from the convex hull.

An alternative way to measure the propensity for confusion is the count the number of periods in which

the distance between the output distribution and the convex hull is within ǫ for each ǫ greater than zero.

The resulting graph of frequencies versus ǫ for each mechanism appears in Figure 5. The Market Scoring

Rule and the Poll generate output distributions within ǫ of the convex hull most frequently when ǫ is small.

As ǫ is increased, however, the Market Scoring Rule moves from most frequent to least frequent and the

Parimutuel moves from second-least frequent to most frequent. In other words, the Market Scoring Rule

output tends to lie either very close to the convex hull or very far, while the Pari-mutuel output consistently

lies an intermediate distance from the convex hull. Thus, a market observer who is concerned about extreme

levels of confusion should prefer the Pari-mutuel mechanism over the Market Scoring Rule in the eight-state

environment.
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As for the Double Auction mechanism, however, the results are poor in either measure; its average

distance from the convex hull is the highest and the frequency with which it lands within ǫ of the convex

hull is typically the lowest or second-lowest among the four mechanisms.

5.3.5 Summary

As with the two state case, we found one or two mechanisms to be uniquely bad according to each of our

four measures (error, no trade, mirages, and confusion), though the poorly-performing mechanism varies

with the measure. Specifically, the Double Auction and Pari-mutuel generate larger errors, the Pari-mutuel

is the most prone to no trade, the Double Auction creates the most mirages, and the Double Auction and

Pari-mutuel generate the greatest amount of confusion.

The one mechanism that did not perform poorly in any of the four measures is the Poll. The results for

the eight-state experiments are summarized in the last four columns of Table 11.

6 Discussion

In comparing these four mechanisms (the Double Auction, the Market Scoring Rule, the Pari-mutuel, and

the Poll), we find that the performance of the mechanisms is significantly affected by the complexity of the

environment. In particular, the Double Auction mechanism appears to perform relatively better when the

number of states is small relative to the number of traders and the inference problem of inverting beliefs

back into received signals and then converting aggregated signals into an aggregated belief is relatively easy.

When the environment becomes more complicated, both in the number of states and in the difficulty of

the inference problem, the performance of the Double Auction market breaks down and other mechanisms

emerge as superior processes. In particular, the iterative Poll is the only mechanism in our experiment that

was not outperformed by some other mechanism in any of the four measures of error considered.

Identifying which mechanisms perform well in given environments is only the first step in this research

agenda; many obvious and interesting questions remain open for further research. The most compelling line of

inquiry is into the underlying reasons for a mechanism to succeed or fail in a given environment. For example,

we hypothesize that the failure of the double auction in the eight-state experiments is due primarily to the

increased ratio of the number of securities to the number of traders: the ‘thin markets’ problem. Perhaps as

the number of securities exceeds the number of traders, agents focus their limited attention on a small subset

of the securities during the trading period. This creates an additional coordination problem as traders seek

to focus their attention on markets in which trading is currently most profitable, perhaps due to the trading
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volume in that market and the private information of the given trader. If some securities are ignored and

receive no trades then information aggregation is necessarily incomplete.

Another question is why the Poll, which performs relatively well in the eight-state experiments, suffers

from confusion in the two-state experiments. This is particularly surprising given that the Poll’s output

distribution is the arithmetic mean of the distributions submitted in the final round by the three traders,

so confusion in the output distribution is likely caused by either significant confusion by one trader or mild

confusion by multiple traders. Examining individual-level data from our experiments may shed some light

on these (and other) issues.
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Figure 1: Box-and-whisker plots of the distance between the mechanism output distribution and the full
information posterior for (A) each period in the two-state experiments, (B) each period in the eight-state
experiments, (C) each mechanism ordering in the two-state experiments, and (D) each mechanism ordering
in the eight-state experiments.
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Figure 2: Box-and-whisker plots of the distance between the mechanism output distribution and the full
information posterior for each mechanism in (A) the two-state experiments, and (B) the eight-state experi-
ments.
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Figure 3: Mirages with (A) two states, and (B) more than two states.
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Figure 4: Confusion with (A) two states, and (B) more than two states.
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Figure 5: Frequency of periods (with trade) in which confusion is less than ǫ.
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θ f(θ) f(H |θ) f(T |θ)
X 1/3 .2 .8
Y 2/3 .4 .6

Table 1: The distribution f for the 2-state experiments.
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θ f(θ) f(TTT |θ) f(TTH |θ) f(THT |θ) f(THH |θ) f(HTT |θ) f(HTH |θ) f(HHT |θ) f(HHH |θ)
XY Z 1/6 .320 .213̄ .160 .106̄ .040 .026̄ .080 .053̄
XZY 1/6 .320 .160 .213̄ .106̄ .040 .080 .026̄ .053̄
Y XZ 1/6 .320 .213̄ .040 .026̄ .160 .106̄ .080 .053̄
Y ZX 1/6 .320 .040 .213̄ .026̄ .160 .080 .106̄ .053̄
ZXY 1/6 .320 .160 .040 .080 .213̄ .106̄ .026̄ .053̄
ZY X 1/6 .320 .040 .160 .080 .213̄ .026̄ .106̄ .053̄

Table 2: The distribution f for the 8-state experiments.
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Session No. of No. of Mechanism 1 Mechanism 2
Number States Agents (Periods 1–8) (Periods 9–16)

1 2 3 Pari-mutuel Mkt. Scoring Rule
2 2 3 Pari-mutuel Mkt. Scoring Rule
3 2 3 Mkt. Scoring Rule Pari-mutuel
4 2 3 Mkt. Scoring Rule Pari-mutuel
5 2 3 Double Auction Iterative Polls
6 2 3 Double Auction Iterative Polls
7 2 3 Iterative Polls Double Auction
8 2 3 Iterative Polls Double Auction
9 8 3 Pari-mutuel Mkt. Scoring Rule
10 8 3 Pari-mutuel Mkt. Scoring Rule
11 8 3 Mkt. Scoring Rule Pari-mutuel
12 8 3 Mkt. Scoring Rule Pari-mutuel
13 8 3 Double Auction Iterative Polls
14 8 3 Double Auction Iterative Polls
15 8 3 Iterative Polls Double Auction
16 8 3 Iterative Polls Double Auction

Table 3: The experimental design.

2 States Avg. Distance Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
Avg. Distance - 0.262 0.419 0.295 0.266

Dbl Auction 0.262 - 0.092 0.646 0.663
Mkt Scoring Rule 0.419 - - 0.225 0.098

Pari-mutuel 0.295 - - - 0.519
Poll 0.266 - - - -

10% Significance Ordering: MSR � Pari � Poll � DblAuc
and MSR ≻ Poll � DblAuc

Table 4: p-values of mechanism-by-mechanism Wilcoxon tests on the distance to the full information posterior
for the two-state experiments. Italicized entries are significant at the 10% level.

2 States Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
No Trade 0 1 4 0
Confusion 5 7 6 11

Mirage 13 14 10 12
Confused Mirage 0 1 1 3

None 14 12 13 12

Table 5: Number of periods (out of 32) in which each type of catastrophic failure occurs per mechanism in
the two-state experiments.
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8 States Avg. Distance Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
Avg. Distance - 0.696 0.527 0.605 0.418

Dbl Auction 0.696 - 0.002 0.093 <0.001
Mkt Scoring Rule 0.527 - - 0.083 0.324

Pari-mutuel 0.605 - - - 0.001
Poll 0.418 - - - -

10% Significance Ordering: DblAuc ≻ Pari ≻ MSR � Poll

Table 6: p-values of mechanism-by-mechanism Wilcoxon tests on the distance to the full information posterior
for the eight-state experiments. Italicized (bold-faced) entries are significant at the 10% (5%) level.

8 States Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
No Trade 0 0 9 0

Mirage 13 7 7 3
None 19 25 16 29

Table 7: Number of periods (out of 32) in which each type of catastrophic failure occurs per mechanism in
the eight-state experiments. Note that confusion is omitted since it occurs in all periods of all mechanisms.

8 States Avg Angle Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
Average Angle - 0.014 0.380 0.246 0.258

Dbl Auction 0.014 - <0.001 0.011 <0.001
Mkt Scoring Rule 0.380 - - 0.180 0.773

Pari-mutuel 0.246 - - - 0.286
Poll 0.258 - - - -

10% Significance Ordering: MSR � Poll � Pari ≻ DblAuc

Table 8: p-values of mechanism-by-mechanism Wilcoxon tests comparing the angle between the mechanism
output (h − p0) and the full information posterior (pFI − p0).

8 States Avg No. Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
Average No. Dim. - 2.69 3.69 3.70 3.97

Dbl Auction 2.69 - 0.002 0.003 <0.001
Mkt Scoring Rule 3.69 - - 0.798 0.239

Pari-mutuel 3.70 - - - 0.467
Poll 3.97 - - - -

10% Significance Ordering: Poll � Pari � MSR ≻ DblAuc

Table 9: p-values of mechanism-by-mechanism Wilcoxon tests comparing the number of dimensions (out of
6) of the mechanism output that move in the same direction (from the prior) as the full information posterior.
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8 States Avg Dist Dbl Auction Mkt Scoring Rule Pari-mutuel Poll
Average Distance - 0.447 0.362 0.398 0.312

Dbl Auction 0.447 - 0.001 0.107 <0.001
Mkt Scoring Rule 0.362 - - 0.180 0.257

Pari-mutuel 0.398 - - - 0.008
Poll 0.312 - - - -

10% Significance Ordering: DblAuc � Pari � MSR � Poll
DblAuc ≻ MSR � Poll
DblAuc � Pari ≻ Poll

Table 10: p-values of mechanism-by-mechanism Wilcoxon tests comparing the severity of confusion, as
measured by the distance between the mechanism output distribution and the convex hull of the limit
posteriors.

2 States 8 States
Summary Error No Trade Mirage Confusion Error No Trade Mirage Confusion

Dbl Auction X X X X × X × ×
Mkt Scoring Rule × X × X X X X X

Pari-mutuel X × X X × × X ×
Poll X X X × X X X X

Table 11: Summary of results. A X indicates the mechanism was not significantly out-performed by some
other mechanism in that measure and a × indicates that it was.
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