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Abstract

This paper studies information aggregation in pure common value double auc-
tions with a continuum of traders. This trade environment captures some of
the main features of prediction markets. The population includes both strategic
traders and non-strategic (näıve) agents whose bidding behavior is not influenced
by opponents’ equilibrium strategies. Existence and uniqueness of monotone equi-
librium prices is shown under mild conditions on the distribution of näıve bids.
In any such equilibrium, the mapping from asset values to prices has a domain
split into two distinct areas: a revealing region, where prices equal values, and
a non-revealing region. There is a strictly positive lower bound on the share of
näıve traders below which prices are always fully revealing and an upper bound
beyond which prices are almost nowhere revealing. This indicates that, contrary
to prevailing views, non-negligible levels of noise or liquidity trade are compatible
with perfect information aggregation, although even moderate levels of noise can
lead to nowhere revealing prices. An empirical method to distinguish between
the revealing and non-revealing regions is suggested.
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1 Introduction

Markets have long been touted not only for their role in allocating goods, but also for
their properties as information processors. The efficient markets hypothesis (Fama
(1970)) postulates that prices in competitive markets “fully reflect” all the available
information, which

“... never exists in concentrated or integrated form, but solely as the dispersed

bits of incomplete and frequently contradictory knowledge which all the sep-

arate individuals possess.”

Hayek (1945, p. 519).

Based on this conjecture, exchange institutions designed with the sole purpose of
forecasting future events, commonly referred to as prediction markets, have emerged
in the last two decades.1 Although empirical evidence suggests that market prices
seem to perform well as information aggregators,2 the mechanism by which such
aggregation takes place is not yet clearly identified. A major reason for this gap is
that economics lacks a theory of price formation in markets. Most models either
leave the price setting mechanism unspecified (rational expectations equilibrium
(REE) models) or assume the existence of a market maker, who sets prices by
making inferences on the amount of information individual traders possess (market
microstructure models). Existing research on information aggregation in auctions
provides an explicit mechanism that links individual trader actions to market prices.
However, it has focused primarily on single auctions, which do not account for the
two-sided nature of most asset markets.3

I study price formation in markets by modeling them as common value double
auctions (CVDA) in which risk-neutral traders receive a private signal stochastically
related to the value of the security traded.4 The reasons behind this choice are
threefold. First, double auctions provide an explicit mechanism by which individual
trade decisions translate into prices. Moreover, this mechanism resembles existing
markets, given that both buyers and sellers post offers to respectively buy and sell

1Some examples are the Iowa Electronic Markets (IEM) for presidential elections, the Hewlett-
Packard internal market to predict future sales and Hollywood exchange, a virtual currency market
aimed at forecasting movie ticket sales. I refer the reader to Wolfers and Zitzewitz (2004) for a
more comprehensive list of existing markets.

2See, for instance, Forsythe, Nelson, Neumann, and Wright (1992), Berg, Forsythe, Nelson, and
Rietz (2005), or Berg, Nelson, and Rietz (2003) for evidence from the IEM, and Chen and Plott
(2002) for a study of the internal market at Hewlett-Packard.

3An important exception is the double auction model of Reny and Perry (2006), which provides
theoretical support to the existence of fully revealing REE.

4Common values means that the (unknown) value of the asset is the same for all traders,
although their expectations do not coincide when they receive distinct signals. In contrast, private
values imply that each agent values the asset differently and knows exactly her own valuation.
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units of the asset. Second, having a common value component is essential to study
information aggregation, if we understand it as the process of aggregating, through
market prices, individual pieces of information about the unknown value of the
asset.5 Finally, if the efficient markets hypothesis is correct, pure common values
plus risk neutrality imply that security prices in prediction markets can be directly
interpreted as estimates of some parameter of the probability distribution of the
events to be forecasted.

In order to test how robust information aggregation is to the presence of bound-
edly rational agents, I introduce heterogeneity in the traders’ population by having
both strategic traders and näıve traders. These näıve traders can be seen as the ana-
logue of noise in REE models. I provide a very general definition of näıve bidding
behavior, which includes the noise or liquidity traders used in market microstructure
models as a special case.6 Thus, their presence allows the comparison of existing
results on information aggregation with the predictions of my model. In addition,
näıve traders rule out no trade equilibria, which always exist in double auctions in
which all traders are strategic.

A known issue in double auctions is that traders’ ability to affect prices in finite
agent environments makes equilibrium analysis quite intractable. However, since it
vanishes as the market grows, I look at a limit case with a continuum of agents.7, 8

I characterize (increasing) monotone equilibrium prices in this continuum econ-
omy and show that they exist and are unique among the class of monotone prices
when the distribution of näıve bids satisfies a mild monotonicity condition. Further-
more, I show that in any monotone equilibrium strategic traders place their bids in
regions of the bidding space where prices are equal to asset values or outside the
range of prices. Accordingly, prices are characterized by having its range partitioned
into two distinct regions: a revealing region where prices equal asset values and a

5Recent models of prediction markets proposed by Manski (2004), Gjerstad (2005) and Wolfers
and Zitzewitz (2006) assume that agents have pure private values (referred to as beliefs). In this
setting, each agent knows exactly her valuation of the asset, which differs across agents. Since there
is no individual uncertainty, aggregation of beliefs cannot take place and, instead, these analyses
look at how close prices are to the mean belief.

6The defining feature of näıve traders is that they follow a fixed bidding strategy, regardless
of what the other traders do in equilibrium. That is, unlike strategic traders, they do not best
respond in equilibrium. Moreover, since the analysis presented below applies to a wide class of
näıve bid distributions, I do not require the näıve population to be homogeneous. For instance, the
results of my model would hold for a bid distribution that is arbitrarily close to the distribution
of bids generated by any mix of level-k agents.

7This paper should be regarded as part of a project aimed at analyzing information aggregation
in large markets. The study of the limit economy provides insight into the informational content
of prices as a function of the degree of noise trade, while subsequent research would explore the
convergence of prices in finite markets to prices in the limit economy.

8It is important to note that when agents are price takers, the population of näıve traders can
include pure private value strategic traders, given that bidding their own valuation is a weakly
dominant strategy.
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non-revealing area where prices differ from values and are completely determined
by näıve bids. There are three distinct scenarios: for small shares of näıve traders,
prices are fully revealing (i.e. they equal asset values). When there is a moderate
presence of näıve bidders, the equilibrium price function has both a revealing and a
non-revealing region. Finally, if the share of näıve traders surpasses some threshold
they always determine the price.

This result represents a middle ground between two opposing views about the
relationship between liquidity or noise trade and the informational content of prices.
According to some models (Kyle (1985, 1989)), the introduction of noise prevents
the market from collapsing by precluding prices from fully revealing asset values.
On the other hand, REE models predict that, as long as there is a positive mass of
risk-neutral traders, prices will be perfectly informative (Grossman (1976), Hellwig
(1980)). In the double auction setting, perfectly revealing equilibria are compatible
with non-negligible levels of noise trade. However, prices can be quite uninformative
for moderate shares of näıve traders, which is at odds with the idea that a small
presence of sophisticated traders suffices to get full information aggregation.

It is worth mentioning that, although I restrict my analysis to risk-neutral agents,
introducing risk aversion should not alter its main conclusions. This is so because
the bidding behavior of strategic traders is not substantively influenced by their
attitudes toward risk. Hence, the forecasting properties of prediction markets may
not depend on eliciting risk neutrality.

The characterization of equilibrium prices provided here lends itself to the de-
velopment of an empirical test aimed at assessing how accurately prices reflect asset
values. Since strategic traders place bids only in the revealing region while näıve
traders generally bid in both regions, a simple method to identify revealing prices
can be devised, based solely on data on prices and the density of bids in the neigh-
borhood of prices.

This paper is organized as follows. First I describe a typical prediction mar-
ket, highlighting its relevant features. I then look at existing theories that address
information aggregation through the price mechanism. The common value double
auction model is laid out in section two. Section three presents a no trade theorem.
Section four provides the characterization of equilibrium prices in a continuum agent
economy. An empirical test of information aggregation is then suggested. Before
concluding, I briefly discuss convergence issues regarding finite double auctions.

1.1 Morphology of a Prediction Market

Assume our goal is to predict the outcome of a U.S. presidential election, to be held
at time T . Primaries are over and there are two candidates left, George and John.
We would like to estimate at any time t < T the probability of each candidate
winning the popular vote. Denote such probabilities by P

G
t and P

J
t = 1 − P

G
t ,

respectively. Each individual agent has some information about P
G
t , denoted Fi,t.
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For this purpose, we set up a futures market in which agents can post and accept
offers to trade two futures contracts: the “George security” (denoted by G), which
pays $1 at time T if George wins the popular vote and $0 otherwise; and the “John
security” (J), which pays $1 if John wins and $0 otherwise. According to the efficient
markets hypothesis (henceforth EMH), the equilibrium price of each security at any
time t (pj

t , j = G, J) is such that the expected future price conditional on all the
existing information Ft =

⋃

i Fi,t satisfies

[1 + E(rj
t+1|Ft)]p

j
t = E(pj

t+1|Ft), (1)

where r
j
t+1 is the one period return to security j at time t + 1, which will depend

on agents’ (identical) preferences. Under risk neutrality and pure common values,
r

j
t = 0 for all t and p

j
T = 1{j wins the popular vote},

9 given that neither security pays
dividends but instead has a liquidation value at T of $1 or $0, depending on the
election outcome. This implies that (1) reduces to

p
j
t = E(pj

T |Ft) = E(1{j wins the popular vote}|Ft) =: P̂
j
t . (2)

Therefore, if the efficient market hypothesis is correct and traders are money-
maximizers with no insurance motives, the price of each security provides the “best”
estimate of the winning probability of its associated candidate, given the information
available at that period.

Guided by this conjecture, prediction markets are usually set up as on-line fu-
tures markets with specific features so as to induce risk-neutral behavior among
participants.10 Trading rules resemble those of existing stock exchanges, which are
in essence continuous-time double auctions: traders can either post offers to sell or
buy each of the securities (known as asks and bids, respectively) or accept outstand-
ing offers. An ask (bid) specifies the maximum number of units of the security to
sell (buy) and the minimum (maximum) price to be accepted. All valid asks are
ranked from lowest to highest price, whereas all valid bids are ranked from highest
to lowest. The two outstanding offers are the ask with the lowest price and the bid
with the highest price. If an outstanding ask (bid) is accepted, the next highest
ranked ask (bid) becomes outstanding. When an outstanding offer is accepted, the
price of the ensuing transaction is the price specified in this offer. At each moment,
traders are informed of the outstanding offers and the price of the last transaction.
Additional information such as trade volume, price and bid/ask spread histories is
also available.

The empirical evidence seems to suggest that prices perform well as forecasts.
Regardless of the specific characteristics of the prediction market (size, virtual vs.

91{.} is the indicator function.
10In some of these markets there are tight limits on the amount of money that can be invested.

For instance, the investment limit at the IEM is $500. In addition, transaction costs in these
markets are negligible.
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real currency, type of event to be forecasted), the short and long-run forecasting
properties of prices appear to be better than existing benchmarks, mainly experts’
forecasts and opinion polls. For instance, Forsythe, Nelson, Neumann, and Wright
(1992), Berg, Forsythe, Nelson, and Rietz (2005) and Berg, Nelson, and Rietz (2003)
find that market prices were consistently closer than opinion polls to actual vote
shares at the IEM election markets. With regards to experts’ forecasts, Chen and
Plott (2002) show that price forecasts in the (small) internal market set up by
Hewlett-Packard were closer to actual sales of the company than the official company
forecast.11 Finally, experimental evidence in oral common value double auctions
suggests that prices aggregate information, thus backing the EMH (Plott and Sunder
(1988), Forsythe and Lundholm (1990), Guarnaschelli, Kwasnica, and Plott (2003)).

1.2 Theoretical Foundations of the EMH

Despite these empirical findings, REE models, on which the EMH is based, do not
describe price formation as a function of traders’ actions. Therefore, how information
may be reflected in market prices is left unexplained.12

There are two strands of economic theory that analyze price informativeness by
linking prices to individual trading behavior: market microstructure models and
auction theory. In market microstructure models such as the canonical models of
Glosten and Milgrom (1985) and Kyle (1985) prices typically arise as a result of the
interaction between competitive market makers and individual traders. In this set-
ting, uninformed market makers set prices according to a zero profit rule by making
inferences about the information traders may have.13 Two salient features are the
sequential nature of these models and the heterogeneity of the trader population.
The latter usually consists of informed, strategic traders and uninformed traders,
who can be strategic or not (noise traders) depending on the model. This literature
captures important aspects of the price formation process in some capital markets
in which specialists operate the market. In addition, they provide insights into how
traders’ information gets reflected into prices and the timing of this process. Specif-
ically, they show that information is incorporated into prices gradually, allowing
informed traders to profit from their privileged information, contrary to the EMH.
However, the presence of a non-trivial market maker renders these models unsuited
for the analysis of two-sided decentralized institutions in which no specialists are

11See Sunstein (2004) and Wolfers and Zitzewitz (2004) for a more general discussion about the
empirical evidence regarding prediction markets.

12In REE models such as those of Hellwig (1980), and Grossman (1976, 1978), traders observe
prices before choosing their demands. Thus, the mechanism by which traders’ actions translate
into prices is left out of the model.

13There is an extensive literature emerging from these two models. Important examples are
Easley and O’Hara (1992) and the analysis of Back and Baruch (2004), which shows that Glosten
and Milgrom (1985) and Kyle (1985) merge into the same model under some conditions.

6



present, where all the strategic interaction takes place between individual traders
operating without the constraint of a zero-profit rule.

On the other hand, auction theory looks at information aggregation by modeling
markets as static common value auctions, which have a very simple institutional
structure and pricing rules are predetermined before the auction. Although the static
nature of these trade environments precludes the study of information aggregation
dynamics, this approach has the advantage of providing an explicit mechanism that
links market prices to individual bids. Most research has focused on one-sided
common value auctions, starting with the first price auction of Wilson (1977). The
main finding is that equilibrium prices converge to the true value of the asset as
the number of bidders gets large as long as either the upper bound of the asset
value support grows (Wilson (1977) and Milgrom (1979, 1981)) or as the units at
auction increase (this is the double largeness condition in Pesendorfer and Swinkels
(1997)).14 Information aggregation is caused by agents’ inferences about prices based
on their private information and on the equilibrium behavior of the other agents.
These inferences influence bidding behavior which, in turn, determines prices.

The main drawback of using one-sided auctions to analyze information aggrega-
tion in markets is that there is an implicit non-strategic market maker (the seller)
in charge of the supply. Double auctions models solve this issue by having both
strategic buyers and sellers. However, common value double auctions have proven
quite intractable and very little research exists in this area. A remarkable exception
is the paper by Reny and Perry (2006), who study the existence of fully revealing
equilibrium prices in large mixed value double auctions. They show the existence of
approximately fully revealing prices in large double auctions when agents’ utility is
strictly increasing in the signals agents privately receive.15 Since the private value
component is non-negligible prices do not converge to values as the market grows.

2 The model

There is a continuum of agents, denoted by T. A fraction γ ∈ (0, 1) of them are
sellers, each of them owning one unit of a security, with the remaining fraction
being buyers, willing to buy at most one unit. The value of the security V ∈
[0, 1] is unknown with probability distribution G(V ). Each agent receives a private
signal S ∈ [0, 1] stochastically related to V . Signals are independent and identically
distributed conditional on v, with probability distribution F (S|v).16

14Kremer (2002) summarizes existing results and extends them to the English auction, while
Hong and Shum (2004) study the rates of convergence under both scenarios.

15They prove this result for double auctions with finite bid grids.
16In what follows, I use uppercase letters to denote random variables (V , S) or cumulative

distribution functions (G, F ) and lowercase to denote realizations of random variables (v, si) or
density functions (g, f). In addition boldface letters (e.g. s,S) denote vectors.
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Assumption 1 G(.) has a C1 density g(.) bounded away from 0 in [0, 1]. F ( . |.)
has a C1 density f( . |.) bounded away from 0 in [0, 1]2.

Assumption 2 f( . |.) satisfies the strict monotone likelihood ratio property.

The first assumption implies that the distribution of signals has full support for
all values of the asset. That is, a trader receiving a signal s ∈ [0, 1] cannot rule out
any asset value in [0, 1]. The second assumption means that higher signals are more
likely than lower signals when the asset value is high.

Buyers and sellers simultaneously submit bids and asks to buy and sell specifying,
respectively, the maximum price willing to pay and the minimum price willing to
accept. Bids are restricted to be in [0, 1].17 The price p is given by the (1 − γ)-th
percentile of the bid distribution. Buyers with bids above p and sellers with asks
below p get to trade.18 If there is a positive mass of bids at p there is the possibility
of rationing, i.e. some traders bidding exactly p may not trade. In this case, the
traders bidding p who end up with the object are chosen randomly.19

A fraction η ∈ [0, 1] of both buyers and sellers are näıve traders who do not best
respond in equilibrium but rather use a fixed bidding rule. The remaining mass
of agents are risk-neutral, strategic traders, i.e. they best respond in equilibrium.
The bidding behavior of näıve traders is summarized by the probability distribution
of their bids, H(.|v). I assume that H(.|v) is continuous, weakly monotonic with
respect to asset values and has the same connected support for all v.

Assumption 3 H(.|v) has full support in [bH , b
H

] ⊆ [0, 1] for all v ∈ [0, 1], with

bH < b
H
. H(.|.) is C1 in (bH , b

H
) × [0, 1] and absolutely continuous in [0, 1]2.

This assumption implies that the distribution of näıve bids is atomless. The

full support assumption implies that H(.|v) is strictly increasing in (bH , b
H

) for all
v ∈ [0, 1], i.e. there are no intervals between the lowest and highest näıve bids where
the mass of bids is zero.

Assumption 4 H(b|.) is non-increasing in [0, 1] for all b ∈ [0, 1].

Assumption 4 implies that, for all v, v′ such that v > v′, H(.|v) first order
stochastically dominates H(.|v′). It means that näıve traders tend to bid higher
when the value of the asset is higher.

Examples of näıve bidding satisfying the above assumptions include the typical
random or noise traders commonly used in finance models, who bid according to

17This assumption is without loss of generality since bids outside the unit interval are weakly
dominated by bidding either zero or one.

18In the remainder of the paper I use the term “bid” to refer both to seller asks and buyer bids.
19Reny and Perry (2006) use the same tie-breaking rule.
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the bidding rule βn(s) ∼ U [0, 1] ∀s,20 and traders bidding according to their interim
private beliefs, βn(s) = E(V |s). The latter are similar to traders in the prediction
market models of Manski (2004), Gjerstad (2005) and Wolfers and Zitzewitz (2006).
In those models, traders fail to consider the common value nature of the asset.
Accordingly, one could interpret their behavior as strategic, in the sense that, if
they deem their interim beliefs as their true valuation of the asset, they would be
best responding by bidding E(V |s).21 Thus, a double auction in which the trader
population is divided into pure private value and pure common value strategic agents
constitutes a special case of the double auction environment presented above. Also,
the above definition of näıve traders can include any continuous approximation of
the distribution of bids generated by a population consisting of any mix of level-
k agents (see Crawford and Iriberri (2006) for a definition of level-k thinking in
auctions).22

Given a profile of bidding (pure) strategies β : [0, 1] × T → [0, 1] with β(s, t)
denoting the bid of strategic trader t ∈ T when she receives signal s, let B(.|V, η)
be the cumulative distribution function of bids when the share of näıve traders is η

and B
−
(p|V, η) the mass of bids strictly less than p. Accordingly,

B(p|v, η) := ηH(p|v) + (1 − η)

∫

T

∫ 1

0

1{β(s,t)≤p}f(s|v)dsdµ, (3)

and

B
−
(p|v, η) := ηH(p|v) + (1 − η)

∫

T

∫ 1

0

1{β(s,t)<p}f(s|v)dsdµ, (4)

where µ is a suitable (atomless) measure on T.

The asset value V determines the distribution of signals F (.|V ). Given that there
is a continuum of traders receiving i.i.d. signals, by the law of large numbers, the
profile of signals received by traders coincides with the whole distribution of signals
conditional on V .23 Accordingly, given strategy profile β(., .), the market clearing
price is completely determined by V . Hence, for all v ∈ [0, 1] the market price is

20Their bid distribution is H(b|v) = b for all v, which weakly satisfies Assumption 4.
21This is true given that in a continuum economy agents are price takers. Thus, it is optimal for

a buyer (seller) to bid her private value in order to maximize her gains from trade.
22The distribution of bids generated by such population can include atoms and therefore vio-

late Assumption 3. However, such distribution can be approximated by an atomless distribution
satisfying the above assumptions.

23As pointed out by Judd (1985) there are measurability problems when dealing with a continuum
of random variables. While acknowledging those issues, I do not address them in the analysis
presented here. Hammond and Sun (2006) propose extending the usual product probability space
to one that retains the Fubini property so that measurability is restored. For instance, as shown
by Sun (1996), we obtain the exact law of large numbers if we assume that T is a hyperfinite set
(thus having cardinality continuum) and extend the standard product measure space defined on
[0, 1]× T to the corresponding nonstandard Loeb space.
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given by the function ρ : [0, 1]2 → [0, 1] that satisfies

(1 − γ) ∈ [B
−
(ρ(v, η)|v, η), B(ρ(v, η)|v, η)]. (5)

The payoff functions for a (strategic) buyer t and a seller t′ are, respectively,

πbuy(s, t) := E((V − ρ(V, η))1{β(s,t)>ρ(V,η)}|s)

+ E((V − β(s, t))λ(β(s, t), V )1{β(s,t)=ρ(V,η)}|s), (6)

and

πsell(s, t′) := E((ρ(V, η) − V )1{β(s,t′)<ρ(V,η)}|s)

+ E((β(s, t′) − V )(1 − λ(β(s, t′), V ))1{β(s,t′)=ρ(V,η)}|s), (7)

where λ(b, v) represents the probability of getting the object given bid b and asset
value v when ρ(v, η) = b.

3 Equilibrium Prices

In this section I investigate how well equilibrium prices forecast asset values as a
function of the presence of näıve traders (η) and of their specific bidding behavior
(H(.|.)). Accordingly, I restrict my attention to equilibria with prices ρ(v, η) that are
increasing in v (henceforth monotone equilibria). The two main results are stated in
Propositions 1 and 2. The first provides a characterization of monotone equilibrium
prices, whereas the second shows existence and uniqueness of such prices. All proofs
are relegated to the Appendix.

The characterization of equilibrium prices provided below is driven by the in-
ability of a single trader to affect prices when there is a continuum of agents. Price
taking behavior induces two key features of payoff functions (6)-(7): (i) buyers and
sellers have the same preference ranking over bids (Lemma 1), and (ii) bidding be-
havior is oriented to maximize the probability of trading in favorable conditions
while avoiding undesired trades, considering prices fixed. The latter, coupled with
increasing prices, leads strategic traders to avoid bidding in areas of the price range
where prices are not equal to asset values, i.e. where prices are non-revealing.

Lemma 1 (Symmetric Preferences) Buyers and sellers receiving the same sig-
nal s ∈ [0, 1] have the same ranking over bids in [0, 1].

To get some intuition on both the symmetry of preferences and the incentive to
avoid bidding in non-revealing regions, consider the price function depicted in Figure
1. The range of prices consists of a revealing interval [0, p1] and a non-revealing
interval (p1, p2]. Prices are greater than values whenever ρ(v, η) is above the diagonal
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ρ(v, η)

0 1

1

b

b′

p1

p2p2

ρ−1(b,η) ρ−1(b′,η)

seller
trades

ρ(., η)

buyer
trades

I

II

III

Figure 1: Strategic Bidding

and viceversa. Assuming there is no rationing, the payoff for a buyer bidding b when
she receives signal s is the expected value of the difference v−ρ(v, η), conditional on
s, for all prices below b. That is, it is the expected value of shaded area I. For a seller
with signal s and bid b, the payoff is obtained by integrating the difference ρ(v, η)−v

for prices above b, i.e. the expected difference between transactions involving prices
above values (area II) and transactions for which ρ(v, η) < v (area III).

The rationale behind symmetric preferences is the following: for a seller with
signal s, the payoff for trading the object when prices fall within two alternative
bids b and b′ is the negative of the payoff for a buyer receiving the same signal. In
addition, when a seller bidding b trades (because ρ(v, η) > b) a buyer bidding b does
not trade. If a seller with signal s strictly prefers bid b to bid b′ > b it is because the
expected payoff, conditional on s, of trading at prices between b and b′ is positive.24

But then, a buyer with the same signal would rather avoid trading at those prices
by also bidding b.

Consider now a seller who places a bid in a non-revealing area, e.g. by bidding b.
She has an incentive to deviate and bid either in [0, p1] since all transactions in area
I involve ρ(v, η) > v, or to bid in [p2, 1] if, conditional on her signal, the expected
difference between the gains in areas I and II and the losses in area III is negative. In

24That is, for values between ρ−1(b, η) and ρ−1(b′, η), where ρ−1 denotes the inverse image of
the price function.
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the latter case, by bidding above p2 she abstains from trading and gets zero payoffs.
On the other hand, if a seller bids b′ she is engaging in negative transactions, which
can be avoided by bidding above the area where ρ(v, η) < v (i.e. in [p2, 1]) or can be
compensated with gains from areas I and II (by bidding in [0, p1]). By the symmetry
of preferences, no buyer would bid b or b′. This also indicates that no strategic trader
would bid below a non-revealing interval that starts with ρ(v, η) < v.

Proposition 1 and Corollary 1 are a direct consequence of these two key charac-
teristics of traders’ payoffs. Let H(v) = H(v|v).

Proposition 1 (Equilibrium Prices) In any monotone equilibrium of a CVDA
satisfying Assumptions 1-4, there is a set V =

⋃

k

[vk, vk] with vk < vk+1 for all

k = 1, ..., K ≤ ∞ and a collection of signals {s∗k} with s∗k < s∗k+1 such that prices
are given by

ρ(v, η) =

{

v if v ∈ [0, 1] r V

p s.t. H(p|v) =
1−γ−(1−η)F (s∗

k
|v)

η
if v ∈ [vk, vk],

(8)

where all vk, vk ∈ (0, 1) and s∗k ∈ [0, 1] satisfy:

1 − γ = ηH(vk) + (1 − η)F (s∗k|vk), (9)

1 − γ = ηH(vk) + (1 − η)F (s∗k|vk), (10)

and, for all s ≤ s∗k (s ≥ s∗k),

E((V − ρ(V, η))1{V ∈(vk,vk)}|s) ≤ 0 (≥ 0). (11)

This result essentially describes monotone equilibria as the succession of non-
revealing intervals ([vk, vk]), where prices are determined by the näıve bids, and
revealing intervals ([vk, vk+1]) in which all strategic bids within the price range are
concentrated. It also establishes that the allocation of strategic bids across the
latter intervals is block-monotonic, i.e. lower signal traders bid in lower intervals.
Specifically, traders with signals in (s∗k, s

∗
k+1) bid in [vk, vk+1].

25 It is important to
point out that prices may be fully revealing, i.e. V is the empty set, or completely
determined by the distribution of näıve bids, i.e. V = [0, 1]. The next corollary
further requires that, in any non-revealing interval, prices are above values in the
lower portion of the interval and below values in the upper part.

25When v1 > 0 traders with signals below s∗1 bid in [0, v1] and in [0, ρ−1(0, η)] if v1 = 0, i.e.
outside the price range. Similarly, traders with signals above s∗K either bid in [vK , 1] (when vK < 1)
or in [ρ−1(1, η), 1] (when vK = 1).
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Corollary 1 In any monotone equilibrium with V non-empty, given (vk, vk), either
ρ(v, η) = v a.e. in (vk, vk) or there exist v′

k, v
′′
k with vk < v′

k ≤ v′′
k < vk such that

ρ(v, η) ≥ v a.e. in [vk, v
′
k] with strict inequality in a non-null subset, and ρ(v, η) ≤ v

a.e. in [v′′
k , vk] with strict inequality in a non-null subset. Moreover, if this is true

for intervals (vk, v̂] and (v̂, vk), then E((V − ρ(V, η))1{V ∈(v̂,vk)}|s
∗
k) ≥ 0.

Corollary 1 states that prices in intervals where no strategic bids are placed need
to begin with prices above values and end with prices below values. When faced
with the prospect of bidding just below an interval where values are always above
prices, a seller would rather deviate and bid just above that region to avoid trading
at those prices. A symmetric reasoning applies when the seller bids just above an
interval in which ρ(v, η) > v. It also says that, if a non-revealing interval consists of
two or more disjoint subintervals, each of them beginning with prices above values
and ending with prices below values, no strategic bidder bidding below such interval
has an incentive to deviate and bid in between two of those subintervals.

Examples of prices that can and cannot be an equilibrium are shown in Figure
2.26

The proofs of Proposition 1 and Corollary 1 hinge upon a series of lemmas in the
Appendix, which formalize the intuition about strategic bidding presented above.
In addition to having symmetric preferences (Lemma 1), I show that no strategic
bidder would place bids just below a non-revealing interval that starts with prices
below values (Lemma 2). Lemma 3 states that strategic bidders avoid placing bids
in non-revealing intervals. Finally, as assumed above, no rationing takes place in
equilibrium, since any atom is solely created by näıve traders and can only happen in
very special cases (Lemma 4). In addition, the block-monotonicity of the distribution
of strategic bids is a direct consequence of the MLRP property and of Lemma 2: if
bidding just below a non-revealing interval is profitable for a trader with signal s, it
is also profitable for all traders with signals below s.

The next result states that monotone equilibria exist in any CVDA with a con-
tinuum of agents satisfying Assumptions 1-4. Furthermore, monotone equilibrium
prices are unique. Finally, it sheds light on how the presence of näıve traders affect
the informational content of prices: there is a strictly positive lower bound on the
share of näıve bidders below which prices are fully revealing and there is an upper
bound above which prices are always set by näıve bidders and strategic bidders bid
outside the price range.

26To correctly interpret these figures assume that strategic bids are placed in the intervals where
ρ(v, η) = v.
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Figure 2: Candidates for Equilibrium Prices
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Proposition 2 (Existence of Monotone Equilibria) Let Assumptions 1-4 be
satisfied. Then a monotone Bayesian Nash equilibrium in pure strategies exists
for all η ∈ [0, 1] and the resulting price function ρ(., η) is the unique monotone
price function that can be supported in equilibrium. Furthermore, there exists
η ∈ (0, min{γ, 1 − γ}) such that V is the empty set (fully revealing prices) for all
η < η, and there exists η ≤ 1 such that V = [0, 1] for all η > η (η < 1 if H ′(v) ≥ 0
whenever H(v) = 1 − γ).

Existence of equilibrium is given by the continuity of distributions H, F and
expectations, and by the monotonicity of H, F with respect to v. The former guar-
antees the existence, for each η, of a block-monotonic distribution of strategic bids
satisfying the equilibrium conditions of Proposition 1. The latter leads to increas-
ing prices when the distribution of strategic bids is block-monotonic. Uniqueness
is based on the fact that, due to the strict MLRP, each triplet (s∗k, vk, vk) satis-
fying (9)-(11) and Corollary 1 is unique. An algorithm to obtain the collection
{(s∗k, vk, vk)}

K
k=1 that characterizes equilibrium price ρ(v, η) is provided in the proof

of Proposition 2.
The last part of Proposition 2 establishes the existence of three types of equilib-

rium prices depending on the proportion of näıve traders: fully revealing, partially
revealing and nowhere revealing prices. To provide some intuition on this result,
let the quantile function α(v, η) represent the highest signal corresponding to bids
at or below v such that ρ(v, η) = v, assuming block-monotonicity. That is, for all

v ∈ [0, 1] such that 1−γ−ηH(v)
1−η

∈ [0, 1], α(v, η) is given by

F (α(v, η)|v) =
1 − γ − ηH(v)

1 − η
. (12)

For most distributions of näıve bids, α(., .) has three distinct regions, depending
on the value of η (see Lemma 5 in the Appendix ).27 For η ∈ [0, η], it is increasing
with respect to v in [0, 1]. It is non-monotonic (whenever it is well-defined) in v

for η ∈ (η, η). Finally, it is decreasing for all η ≥ η. I show that, when α(., η)
is increasing everywhere, prices must be fully revealing. This is true because the
proportion of näıve traders is too small to create non-revealing intervals starting with
prices above values, as required by Corollary 1, when the distribution of strategic
bids is block-monotonic. On the other hand, prices cannot be revealing in intervals
of values where α(., η) is not well-defined or decreasing (Lemma 6). For prices
to be revealing in some interval [v1, v2] in which α(., η) is decreasing, it would be
necessary to have a mass of bids below v2 that is strictly smaller than the mass
of bids below v1 < v2. Moreover, that reduction of mass needs to be greater than

27Distributions H(.|.) such that H ′(v) < 0 for some v are typically multi-modal distributions,
with most of the mass concentrated in a small subset of the support. These can be generated,
for instance, by almost-jump bidding functions, which imply bidding in a small neighborhood of a
finite set of bids for most signals.
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F (α(v1, η)|v1) − F (α(v1, η)|v2), given that α(v2, η) < α(v1, η). However, this is not
possible under the strict MLRP, because the highest possible reduction of mass is
obtained by having bid distributions equal to F (α(., η)|.).

Before presenting an example that illustrates how information aggregation can be
quite sensitive to the presence of näıve traders, it is worth mentioning two aspects
about trade activity in monotone equilibria. Block-monotonicity means that the
strategic traders more active in the market are the low signal sellers and the high
signal buyers. Since the former tend to bid relatively low and the latter bid relatively
high, they engage in trade more often, compared to high signal sellers and low
signal buyers. In addition, the density of bids will generally be higher around fully
revealing prices, given that strategic traders avoid bidding in non-revealing regions.
As suggested in Section 4, this could be the basis to develop an empirical test of
information aggregation.

I now provide an example to illustrate how the informational content of prices
varies with the share and bidding behavior of näıve traders and to provide some
intuition for Proposition 2.

Example 1 Consider a CVDA with the following characteristics. V is distributed
uniformly in [0, 1]; the conditional distribution of signals is Beta(1 + v, 1) (i.e.
F (s|v) = s1+v);28 each näıve trader bids according to βn(s) := 3

5
s1/5, which is a

rough approximation of bidding E(V |s).29

Given βn(.), the distribution of näıve bids is given by

H(p|v) =

{

(

5
3
p
)5(1+v)

if v ≤ 3
5

1 if v > 3
5

(13)

By Proposition 2, there exist cutoff points η, η that determine whether prices
would be fully, partially or non-revealing as a function of η. Since H ′(v) ≥ 0 for all
v, η is strictly less than one.

The first thing to note is that, given η, a necessary condition for a partially
revealing equilibrium with V = [v1, v1] is that there exist a signal s∗1 satisfying (9) at
three distinct values, namely v1, v1 and v′

1 ∈ (v1, v1), the latter being the point at
which ρ(v, η) goes from being above to go below v. Therefore, the function α(v, η)
given by

α(v, η) = F−1(
1−γ−ηH(v)

1−η
|v) =

[

1 − γ − η(1{v>3/5} + 1{v≤3/5}

(

5
3
v
)5(1+v)

)

1 − η

]

1
1+v

28This distribution satisfies all assumptions except the full support, provided it has positive
density in (0, 1) rather than in [0, 1].

29This approximation makes equilibrium computations more tractable without changing any
substantive aspect of the analysis.
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needs to be three-to-one in some subset of its range. If it is strictly increasing in
[0, 1], then equilibrium prices will necessarily be fully revealing. Otherwise, if the
mass of bids in some interval [v1, v2] is reallocated to [0, 1] \ [v1, v2] prices would no
longer be fully revealing in the latter set, and a positive mass of strategic bidders
would rather deviate. On the other hand, if for some η there exists a signal s such
that E(v − ρ(v, η)|s) = 0 where ρ(v, η) given by 1 − γ = ηH(p|v) + (1 − η)F (s|v)
for all v ∈ [0, 1) satisfies ρ(0, η) > 0 and ρ(1, η) < 1, then [v1, v2] = [0, 1] fulfils
Corollary 1, and strategic bids will be confined to [0, 1] \ (ρ(0, η), ρ(1, η)).30

In a symmetric market (γ = 0.5), I find that η ≈ 0.016 and η ≈ 0.214. This
shows that the range of η compatible with fully informative prices can be quite
small. As an illustration, Figure 3 shows equilibrium prices when 10% of traders are
näıve.

The first thing to note is that even with such a low proportion of näıve traders,
prices can be substantially different from values in about half of the domain of
values. Roughly speaking, the probability that prices reflect the true asset value is
about one half in this example.

The mass of strategic bids is split between those with signals below s∗1, who place
bids in [0, v1] and traders with signals above s∗1, who bid in [v1, 1]. This and the
fact that buyers and sellers have the same preference ranking over bids implies that
sellers with signal s < s∗1 are “active” in the market (i.e. their probability of trading
is positive) and get positive expected payoffs while buyers with the same signal are
indifferent between trading or not provided they only trade when ρ(v, η) = v.

The graph of α(v, 0.1) (middle graph of Figure 3) provides some intuition on the
existence and uniqueness of prices. As mentioned above, (s∗1, v1, v1) are given by
(9)-(11), i.e. ρ(v1, 0.1) = v1, ρ(v1, 0.1) = v1 and E((V − ρ(V, η)1{v∈[v1,v1]}|s

∗
1) = 0.

The latter implies that the expected gain a seller with signal s∗1 makes when she
trades at ρ(v, η) > v is exactly offset by trades at ρ(v, η) < v: these two regions
are given by [v1, v

′
1) and (v′

1, v1], respectively. Looking at the graph of α(v, 0.1) we
can see that, as s∗1 increases, the distance between v1 and v′

1 goes to zero implying
that the set of trades with positive payoff shrinks to zero. Similarly, the distance
between v′

1 and v1 goes to zero when s∗1 decreases. Therefore, by the continuity of
E(.|.) and α(., 0.1), we can find a unique triplet (s∗1, v1, v1) satisfying the conditions
of Proposition 1 and Corollary 1.

Before finishing the example, it is important to point out that, although ρ(V, η)
is the unique monotone equilibrium price, there are many possible equilibria asso-
ciated with ρ(V, η). Accordingly, I complete this example by characterizing one of
the possible equilibrium bidding strategies (see bottom of Figure 3), namely the

30If E(V − ρ(V, η)|0) ≥ 0 all the mass of risk-neutral bids would be placed above ρ(1, η) whereas
it would be placed below ρ(0, η) when E(V − ρ(V, η)|1) ≤ 0.
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symmetric equilibrium β(s, t) = β(s) given by

β(s) =



















0 if s ∈ [0, 1−γ
1−η

]

min v s.t. α(v, η) = s if s ∈ (1−γ
1−η

, s∗]

max v s.t. α(v, η) = s if s ∈ (s∗, 1−γ−η
1−η

]

1 if s ∈ (1−γ−η
1−η

, 1]

(14)

4 An Empirical Test of Information Aggregation

Assuming the model laid out in the previous sections is a reasonable approx-
imation of some existing asset markets,31 Proposition 1 suggests a way to identify
empirically the intervals of asset values where ρ(v, η) = v. Furthermore, this iden-
tification should not require information on any of the parameters of the market,
namely γ, η, H(.|.), F (.|) and G(.). The only identification restrictions (other than
Assumptions 1-4) would be the monotonicity of equilibrium prices and the distribu-
tion of näıve bids having full support on the set of possible asset values.32

The heuristics of how to distinguish the set where prices are fully revealing from
the set where ρ(v, η) 6= v are rather simple. Recall that strategic bids are placed
only in intervals of the price range where ρ(v, η) = v. Accordingly, the density
of bids is higher in a small neighborhood of the observed price when it equals the
unknown asset value than when value and price differ. That is, we should observe a
discontinuous change in the density of bids at the boundaries {vk} and {vk} of non-
revealing intervals. Specifically, as v increases, the density drops at {vk} and jumps
at {vk}, respectively. Hence, using only a series on prices and on a suitable measure
of the size of the order flow around market prices one could statistically distinguish
the two informational regimes: revealing versus non-revealing prices. Note also
that by identifying the sets where prices differ from values we can establish a (not
necessarily tight) upper bound on |ρ(v, η) − v|. Assume [ρ(vk, η), ρ(vk, η)] is a non-
revealing interval of prices. Then, ρ(vk, η) = vk and ρ(vk, η) = vk. By monotonicity
of prices, |ρ(v, η) − v| < ρ(vk, η) − ρ(vk, η) for all p ∈ [ρ(vk, η), ρ(vk, η)].

This approach can be of special relevance in some markets where the true value
of the asset is never observed, and therefore the forecasting properties of prices are
hard to assess. For instance, in markets where Arrow-Debreu securities are traded,
the true value of the security (i.e. the probability of the state of nature in which

31Apart from prediction markets, other trading institutions with a double-auction format such
as futures markets or stock exchanges could be suitable for this empirical approach as long as
participants in those markets can reasonably characterized as either nonstrategic traders, who
transact in these markets primarily driven by liquidity or similar considerations, and arbitrageurs
(i.e. strategic agents), whose primary motive is to engage in speculative trading.

32Obviously, since this is an static model and most actual markets are dynamic, any empirical
analysis would need some stationarity assumptions.
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the security pays a dividend) is never observed. Only the realization of the state is
observed.

5 A note on Equilibria in large CVDA

In the continuum agent economy analyzed in the previous sections agents use
their private information to decide at which prices they are willing to trade. How-
ever, in markets with a finite number of agents, individual decisions have a non-
negligible effect on prices. Therefore, it is natural to ask whether the characteriza-
tion of prices given in Proposition 1 is a good approximation of what happens in
large but finite common value double auctions with näıve traders. That is, whether
we can find a sequence of finite economies such that, as the number of traders
goes to infinity, (i) equilibrium prices exist and, (ii) they “converge” to monotone
equilibrium prices of the continuum agent CVDA.33

Although this analysis is beyond the scope of this paper it is worth discussing
what might happen when agents can affect the price. The first thing to note is that
when agents have the ability to affect prices zero (interim) expected payoffs may
not be possible in equilibrium, because traders may have an incentive to deviate in
order to push prices in their favor if the missed transactions for doing so involve
zero profits. Hence, for equilibrium prices to converge to fully revealing prices they
would need to balance vanishing positive expected payoffs with vanishing pivotal
probabilities (i.e. the probability of a given agent to affect equilibrium prices).
However, I conjecture that this is not possible, because the shares of näıve traders
compatible with fully revealing prices (η ≤ η) are too low to create such arbitrage
opportunities.34 On the other hand, convergence in the partially and non-revealing
regions should hold, given that in such scenario positive payoffs do not vanish in the
limit.35

To provide some intuition, imagine that equilibrium prices in a large market
look like those in the top graph of Figure 4. Unlike in the continuum agent market,
there is a fundamental asymmetry in the preferences of buyers and sellers due to
their incentive to affect prices in opposite directions. As a consequence, buyers and

33The appropriate notion of convergence would depend on the particular technique used in the
asymptotic analysis. For instance, if the finite economies have a continuous bid space as in most
analyses of private value double auctions, given the conditional independence of agents’ signals, a
natural notion is almost sure convergence in the probability space generated by the random vector
of asset values and signal profiles. If an analysis à la Reny and Perry (2006) is required, where bids
are restricted to be chosen from a discrete grid, a different notion of convergence would be needed.

34This is why for very low η only fully revealing prices are possible in any monotone equilibrium
of the continuum agent CVDA.

35A way to get convergence to fully revealing prices could be to make the share of näıve traders
converge from above to η at a lower rate than the rate at which pivotal probabilities vanish, instead
of holding η constant.
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sellers bid in different regions of the bidding space, i.e. now buyers (sellers) do not
bid where expected prices lie above (below) values. Accordingly, prices below p1

are slightly above expected values reflecting the overbidding of active sellers trying
to increase the price while prices above p2 are below expected values due to the
underbidding of buyers. Note that no strategic seller (buyer) would bid very close
to v1, since he will only trade the object when prices are below (above) expected
values. Therefore, only näıve bidders would bid in a neighborhood (p1, p2) of v1.
However, if η is too small, the mass of bids in (p1, v1) (respectively (v1, p2)) is not
enough to bring expected prices above (below) values and prices would instead be
like those in the bottom of Figure 4, which cannot be an equilibrium since buyers
(sellers) bidding close to p2 (p1) would like to revise their bids.

6 Discussion and Concluding Remarks

Unlike REE models where the use of Walrasian equilibrium leaves price for-
mation unspecified, double auctions provide insight into how individual trading
decisions determine market prices so that information aggregation can be explic-
itly analyzed. In the pure common value market presented here, agents use their
private information in their bidding strategies, despite (i) being price takers and
(ii) their private information not adding any new information to the market. This
stems from the fact that agents do not observe the price before deciding whether
to trade or not. In contrast, in REE models the use of private information in large
markets is often linked to risk aversion. This leads to a well-establish paradox asso-
ciated to REE models (Hellwig (1980), Diamond and Verrecchia (1981), Grossman
(1976, 1978)): if agents are risk-neutral, prices become fully revealing regardless
the level of noise trade (modeled as random demand/supply).36 Accordingly, agents
dismiss their private information, which raises the question of how such information
ends up reflected in the market price.

Hence, the analysis presented here provides an alternative theory of how and
when prices aggregate information: even if no single agent can affect the price,
private information is always useful to the individual trader since he can make
inferences about the market price. This inference process is the mechanism by
which individual information gets reflected into prices. Moreover, the usefulness of
this information does not seem to depend on attitudes toward risk or on the size of
the market. One could argue that the fact that information aggregation is driven
by the use of private information to forecast prices is a more appealing explanation
than information aggregation being driven solely by attitudes toward risk.

36For instance, in Hellwig (1980), as long as there is a non-vanishing share of risk-neutral agents,
the unknown realization of the returns from the risky asset can be fully inferred from the price,
for any finite per capita level of noise in the asset supply.
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The introduction of risk aversion should not change the implications of the model.
Specifically, the key feature of strategic bidding behavior, namely that they do
not bid in non-revealing areas of the equilibrium price function, still holds for risk
averse agents. Accordingly, one should be able to prove results similar to those
presented above for a population of strictly risk averse agents.37 This would imply
that risk aversion does not substantively affect the informational properties of prices.
With regards to prediction markets, my motivating example, this means that their
performance should not hinge upon eliciting risk neutral behavior.

It is important to point out that the assumption of common values is key to
analyze information aggregation, given that they trigger the inference process that
drives information into prices.38 Thus, recent models analyzing prediction markets
where agents fail to understand the existence of a common value component (Man-
ski (2004), Gjerstad (2005), Wolfers and Zitzewitz (2006)) do not regard prices as
information aggregators. Instead, they look at how close prices are to some statistic
(e.g. the mean) of the distribution of agents’ interim beliefs (i.e. beliefs based only
on their privately held information). Their approach would be equivalent to having
a share of näıve traders η = 1 when näıve traders bids are equal to the expected
value of the asset conditional on their private signals. Not surprisingly, in such a
case, prices are almost nowhere equal to asset values.39

From the analysis of the common value double auction, the main conclusion to
extract is that, with price-taking behavior, prices aggregate information as long as
the level of noise or liquidity trade, embodied by the presence of näıve traders, is
small.40 Otherwise, prices can be far from fully revealing. As the above example
shows, the market price can be quite uninformative even for shares of näıve traders
as low as 10%. This conclusion is at odds with some well-established views about
the informational efficiency of markets. One such view is that a non-negligible share
of marginal traders is enough to induce fully revealing prices (Wolfers and Zitzewitz
(2004), Forsythe, Nelson, Neumann, and Wright (1992), Hellwig (1980)).41 As it is

37Risk aversion breaks the symmetry of buyers and sellers’ preferences and induces some strategic
traders to abstain from trading. However, one should be able to get equilibrium prices similar to
those given by Proposition 1 by having two block-monotonic bid distributions, one for buyers and
one for sellers. This reasoning applies to any population of traders with heterogeneous degrees of
risk aversion, as long as the set of distinct attitudes toward risk is finite, so that the number of
different block-monotonic distributions is also finite.

38With private values individual beliefs depend only on the individual’s private information, thus
learning the market price does not provide any additional insight to the trader about the value of
the asset.

39One could argue that private information already incorporates common information, and mar-
kets simply attract well-informed individuals. In such a case, it would be interesting to model entry
decisions as a function of the quality of private information. Neither the double auction model
presented here nor existing models aimed at analyzing prediction markets deal with this issue.

40In the absence of price-taking behavior, one should expect prices being less informative.
41Marginal traders refer to those traders who react to their information and to changes in

prices so as to induce prices to reflect available information. The definition of “marginal” trader
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shown here, this is not true in the double auction. In the example provided, the
minimum share of marginal traders compatible with fully revealing prices is about
98.5%. An alternative view is that, as long as there is a positive amount or noise
or liquidity trade, prices cannot be fully revealing (Black (1986), Reny and Perry
(2006), Kyle (1985, 1989)). In the double auction, this is not true either. When we
account for the strategic incentives of traders, information aggregation is possible
although it is quite sensitive to the amount of non-strategic traders in the market.

The analysis also provides insight into the qualitative behavior of strategic traders
in double auctions. First, not surprisingly, low signal sellers and high signal buyers
are more active in the market. That is, sellers with lower interim valuations and
buyers with more positive views about the asset value will trade in a wider range
of prices, compared to low signal buyers and high signal sellers. More interesting
is that strategic traders restrict their asks and bids to areas where prices are fully
revealing and, if that is not possible, they will bid outside the range of prices. This
means that strategic traders are perfect price setters whenever possible, given that
they set prices equal to values in the range of prices where they place their bids.
This feature of the model provides the possibility to empirically distinguish between
revealing and non-revealing areas without knowledge of the amount of näıve traders,
their bidding behavior, or the distribution of private information.

I conclude with a word of caution. To induce price taking behavior I have
analyzed a continuum agent market. Therefore, it remains to be seen if the results
obtained carry through large but finite economies.

varies across models. For some authors it means traders not suffering from rationality “biases”
(Forsythe, Nelson, Neumann, and Wright (1992)), whereas in REE models it means risk-neutral
agents (Hellwig (1980)).
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A Appendix: Proofs

A.1 Proofs of Proposition 1 and Corollary 1

Proof of Lemma 1. Let ρ(V, η) be the price function resulting from strategy
profile β(., .), and assume buyer t and seller t′ bid b when they receive signal s, i.e.
β(s, t) = β(s, t′) = b. If we subtract (7) from (6) we get

πbuy(s, t) = πsel(s, t′) + E((V − ρ(V, η))|s). (15)

Since the last term does not depend on b, a buyer and a seller receiving the same
signal will have the same preference ranking over bids. �

Let ρ−1
+

(b, η) := max{v : ρ(v, η) = b} and ρ−1
−

(b, η) := min{v : ρ(v, η) = b}.

Lemma 2 (Strategic Bidding in monotone equilibria (I)) Let β(., .) be a mono-
tone equilibrium strategy profile and (v1, v2) be a non-degenerate set of asset values.

(i) If ρ(v, η) < v for all v ∈ (v1, v2) and there is some trader t such that β(s, t) <

ρ(v1, η) for some s, then there exists v′ < v1 such that ρ(v, η) ≥ v for all
v ∈ (ρ−1

−
(β(s, t), η), v′), with strict inequality in a non-null subset.

(ii) If ρ(v, η) > v for all v ∈ (v1, v2) and there is some trader t such that β(s, t) >

ρ(v2, η) for some s, then there exists v′ > v2 such that ρ(v, η) ≤ v for all
v ∈ (v′, ρ−1

+
(β(s, t), η)), with strict inequality in a non-null subset.

Proof of Lemma 2. Part (i): assume that ρ(v, η) ≤ v for all v ∈ (ρ−1
−

(β(s, t), η), v1).
Then, given that E((V − ρ(V, η))1{ρ(V,η)<v2}|s) > 0 for all s, a buyer would strictly
prefer to bid v2 than β(s, t). Since preferences are symmetric, a seller would also
prefer to bid v2.

42

A symmetric argument applies to (ii). �

The following fact is needed for the proofs of Lemma 3 and Proposition 1.

Fact 1 Let Assumptions 1 and 2 be satisfied. If ρ(v, η) > v for all v ∈ [v1, v2) and
ρ(v, η) < v for all v ∈ (v2, v3] with ρ(., η) increasing, then for all s ∈ (0, 1),

(i) If E((V − ρ(V, η))1{V ∈[v1,v3]}|s) ≤ 0, then E((V − ρ(V, η))1{V ∈[v1,v3]}|s
′) < 0 for

all s′ < s;

42Note that if b is an atom of the price distribution, v′ ≤ ρ−1
+

(β(s, t), η) can only hap-
pen if the probability of getting the object is zero, i.e. λ(β(s, t), v) = 0 for all v ∈
(ρ−1

−
(β(s, t), η), ρ−1

+
(β(s, t), η)). Otherwise, a trader bidding at b would rather bid lower.
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(ii) If E((V − ρ(V, η))1{V ∈[v1,v3]}|s) ≥ 0, then E((V − ρ(V, η))1{V ∈[v1,v3]}|s
′) > 0 for

all s′ > s.

Proof of Fact 1. Let E((V − ρ(V, η))1{V ∈[v1,v3]}|s) ≤ 0. Thus,

1

f(s)

∫ v2

v1

(ρ(V, η) − V )f(s|v)g(v)dv ≥
1

f(s)

∫ v3

v2

(V − ρ(V, η))f(s|v)g(v)dv. (16)

By the strict monotone likelihood ratio of F (Assumption 2) we have that for all

s′ < s and all v′ ∈ [v1, v2) and v ∈ [v2, v3),
f(s′|v′)
f(s|v′)

>
f(s′|v)
f(s|v)

. Given this and the above
inequality, we have that

∫ v2

v1

(ρ(V, η)−V )f(s|v)
f(s′|v)

f(s|v)
g(v)dv >

∫ v3

v2

(V −ρ(V, η))f(s|v)
f(s′|v)

f(s|v)
g(v)dv. (17)

Given that f(s′) > 0 for all s′ by the full support of F and G (Assumption 1),
(17) implies that E((ρ(V, η) − V )1{V ∈[v1,v2]}|s

′) > E((V − ρ(V, η))1{V ∈[v2,v3]}|s
′).

A symmetric argument applies to part (ii). �

Lemma 3 (Strategic Bidding in monotone equilibria (II)) In any monotone
equilibrium, the mass of strategic traders submitting bids in {ρ(v, η) : v−ρ(v, η) 6= 0}
is zero, except perhaps when there is a positive mass at the boundaries of the price
range, ρ(0, η) and ρ(1, η), and there is complete rationing (1−γ = B(ρ(0, η)|v) for all
v ∈ [0, ρ−1

+
(0, η)]) and no rationing (1 − γ = B

−
(ρ(1, η)|v) for all v ∈ [ρ−1

−
(1, η), 1]),

respectively.

Proof of Lemma 3. By Lemma 1, I only need to look at a buyer’s incentives.
The proof goes along the following lines. First, I show that no strategic buyer is
best-responding by bidding the interior of an interval of prices in which ρ(v, η) 6= v.
Second, I show that if ρ(., η) is constant in an interval of values (i.e. the distribution
of prices has an atom) a strategic buyer will only bid at the atom if she gets the object
with probability zero or one, depending on whether the expected value of ρ(V, η)−V

at the atom is positive or negative, respectively. Otherwise, she would bid slightly
above or below to avoid to either avoid trading or being rationed. Finally, I prove
that these conditions cannot be satisfied at an atom in the interior of the price
range. Therefore, the only possibility left for a strategic buyer to bid in {ρ(v, η) :
v − ρ(v, η) 6= 0} is to bid at the boundaries, with the condition that she does not
trade almost surely when she bids ρ(0, η) and that she trades with probability one
when bidding ρ(1, η).

Assume, that a buyer bids in an interval (ρ(v1, η), ρ(v2, η)) where v > ρ(v, η) and
ρ(v, η) is strictly increasing a.e. in (v1, v2), i.e. there is no atom in (v1, v2). In this
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case, she prefers to bid v2 to any bid b ∈ (ρ(v1, η), ρ(v2, η)), given that her payoff
increases by E((V − ρ(V, η))1{ρ(V,η)∈(b,ρ(v2 ,η))}|s), which is strictly positive for all s.
Now assume that v < ρ(v, η) in (v1, v2). Then, a buyer would prefer to bid below
ρ(v1, η) given that E((V − ρ(V, η))1{ρ(V,η)∈(ρ(v1 ,η),b)}|s) < 0 for all s.

Now assume there is an atom at b. If there is a positive mass of strategic bids
at b, with ρ(v, η) = b on some interval (v1, v2), a buyer with signal s might bid
at b ∈ (0, 1) under one of these conditions: (i) E((V − b)1{ρ(V,η)=b}|s) = 0; (ii)
E((V − b)1{ρ(V,η)=b}|s) > 0 with λ(b, v) = 1 for all v ∈ (v1, v2) (i.e. no rationing);
(iii) E((V − b)1{ρ(V,η)=b}|s) < 0 with λ(b, v) = 0 for all v ∈ (v1, v2) (i.e. no trading
when ρ(., η) = b).

In case (i), she is indifferent between bidding slightly above or below b. However,
Fact 1 implies that there can be at most one signal satisfying (i).43 Therefore the
mass of bids at b due to (i) is zero. In (ii), unless she gets the object with probability
one (λ(b, v) = 1) she would rather bid above b. Finally, in (iii) she may bid at b

only if the probability of getting the object is zero (λ(b, v) = 0). Since in each of
the latter two cases λ(b, .) is required to be zero or one in the whole interval (v1, v2),
there cannot be two traders bidding at b with distinct signals satisfying (ii) and (iii),
respectively. Accordingly, all the mass of strategic bidders bidding at b either satisfy
(ii) or (iii).

Now I show that (ii) and (iii) can only happen when b = ρ(1, η) and b = ρ(0, η),
respectively.

Assume (ii) is satisfied for all bidders bidding at b and let s be the lowest signal
associated to b. Accordingly, a trader receiving s bids optimally at b if

E((V − ρ(V, η))1{p≤b}|s) ≥ 0, (18)

and
E((V − ρ(V, η))1{p>b}|s) ≤ 0. (19)

By Lemma 2, we can apply Fact 1 to (18) and (19).44 Hence, all strategic traders
with signals above s will bid at or above b (assuming λ(b, v) = 1). Likewise, given
(19) and the fact that E((V − b)1{ρ(V,η)=b}|s) ≥ 0, all strategic traders with s < s

will bid strictly below b.
For λ(b, v) = 1 we need the mass of sellers bidding strictly less than b be equal

to the mass of buyers bidding at b or above. That is, for all v ∈ (v1, v2),

γ[ηH(b|v) + (1 − η)F (s|v)] = (1 − γ)[η(1 − H(b|v)) + (1 − η)(1 − F (s|v))]. (20)

43For (i) to hold v < b in the lower part of (v1, v2) and v > b in the upper part of the interval,
so that Fact 1 applies.

44By the linearity of expectations, the conclusions of Fact 1 also apply to a succession of intervals
satisfying the conditions in the lemma.
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Given that B
−
(b|v) = ηH(b|v)+(1−η)F (s|v), the above expression is satisfied when

B
−
(b|v) = 1 − γ for all v ∈ (v1, v2).
Now assume that b < ρ(1, η), i.e. v2 < 1 and ρ(v, η) > b for all v > v2. For that

to happen we need B(b|v) < 1−γ for all v > v2. But this implies, by the continuity
of B(b|v) and B

−
(b|v), that there exists v′ < v2 such that B

−
(b|v) < B(b|v) ≤ 1 − γ

for all v ≥ v′, which contradicts that λ(b, v) = 1 for all v ∈ (v1, v2). Hence, (ii) is
only possible in equilibrium if b = ρ(1, η) and v2 = 1.

A symmetric argument applies when (iii) is satisfied for almost all strategic
traders bidding at b. In this case, the mass of sellers bidding at or below b needs
to be equal to the mass of buyers bidding strictly above b for λ(b, v) = 0. This
requires that B(b|v) = 1 − γ for all v ∈ (v1, v2). By the continuity of B(b|v) and
B

−
(b|v), b = ρ(0, η) and v1 = 0, otherwise there would be a subset of (v1, v2) for

which 1 − γ ≤ B
−
(b|v) < B(b|v), contradicting that λ(b, v) = 0 for all v ∈ (v1, v2).

Finally, if ρ(1, η) is not an atom, the probability of rationing at ρ(1, η) is zero and
a buyer bidding ρ(1, η) will always trade. In this case there can exist a positive mass
of strategic bids at ρ(1, η) < 1, since any buyer bidding ρ(1, η) < 1 is indifferent
between any two bids in [ρ(1, η), 1]. A symmetric argument can be made for bids at
ρ(0, η) > 0. �

Lemma 3 allows for the possibility of having strategic bids placed at an atom, at
ρ(0, η) or at ρ(1, η), of the price distribution if either sellers or buyers bidding at the
atom trade with probability one, respectively. However, as the next lemma shows,
atoms can only occur for very particular näıve share and bid distributions.

Lemma 4 (No atoms) In any monotone equilibrium if there exists v1 < v2 such
that ρ(v, η) = b on (v1, v2) then

(a) E((V − ρ(v, η))1{V <v2}|s) ≥ 0 for all s, and H(ρ(v, η)|v) = 1−γ
η

for all v ≤ v2;

(b) E((V − ρ(v, η))1{V <v2}|s) ≤ 0 for all s, and H(ρ(v, η)|v) = η−γ
η

for all v ≥ v1.

Lemma 4 basically states that atoms in the price distribution are solely created
by näıve traders, and that very special circumstances need to occur: the share
of näıve bids is very high compared to γ (or to 1 − γ); näıve traders completely
determine prices at the low (high) end of the price range, with those prices being
low (high) enough so that they do not encourage strategic traders to bid below
(above) the atom; and the distribution of näıve bids is independent of asset values
in the interval of values associated with the atom.45

45An example of equilibrium prices being constant in some interval of values is given by a high
enough presence of random traders bidding uniformly in [0, 1]. In this case, H(b|v) = b for all v.
Hence, if η is high enough so that E(V |0) ≥ b = 1−γ

η
, then ρ(v, η) = 1−γ

η
for all v, with all strategic

traders bidding at or above 1−γ
η

. In this case, all strategic buyers and no strategic seller engage in
trade.
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Proof of Lemma 4. Assume there is an interval (v1, v2) such that ρ(v, η) = b for
all v ∈ (v1, v2). By Lemma 2 and Fact 1, if there exists a trader with signal s bidding
below (above) b then it is optimal for all traders with signals below (above) s to
also bid below (above) b. Accordingly, let s ∈ [0, 1] be the highest signal associated
with bids below b, and s ≥ s the lowest signal associated with bids above b. Since
the distribution of näıve bids is atomless (Assumption 3), this implies that

B
−
(b|v) = ηH(b|v) + (1 − η)F (s|v),

and

B(b|v) = ηH(b|v) + (1 − η)F (s|v).

There are two possible cases, depending on whether a positive mass of strategic
bids is placed at b or not, i.e. whether s < s or s = s.

If there is no positive mass of strategic bids at b, we have that B(b|v) = B
−
(b|v) =

1 − γ for all v ∈ (v1, v2). Since F (s|v) is strictly decreasing in v for all s ∈ (0, 1)
and H(b|v) is non-increasing in v for all b ∈ [0, 1], B

−
(b|v) = 1−γ for all v ∈ (v1, v2)

only if s = 0 or s = 1.

a) s = 0: in this case H(b|v) = 1−γ
η

for all v ∈ (v1, v2). But then, we need

E((V −ρ(V, η))1{ρ(V,η)≤b}|s) = E((V −ρ(V, η))1{V <v2}|s) ≥ 0 for all s, otherwise
some strategic traders would rather bid below b. Finally, prices below b are
completely determined by näıve bids, since no strategic trader bids below b,
i.e. H(ρ(v, η)|v) = 1−γ

η
for all v ≤ v1.

46

b) s = 1: in this case H(b|v) = η−γ
η

for all v ∈ (v1, v2). In addition, we need

E((V − ρ(V, η))1{V <v2}|s) ≤ 0 for all s. Since no strategic trader bids above b,
prices above b are given by H(ρ(v, η)|v) = η−γ

η
for all v ≥ v2.

If there is a positive mass of strategic bids at b, Lemma 3 applies, requiring either
that B

−
(b|v) = 1 − γ or B(b|v) = 1 − γ. The former requires s = 0 or s = 1, while

the latter can be possible only if s = 0 or s = 1. Therefore, they reduce to the same
conditions on H(.|.) and E((V − ρ(V, η))1{ρ(V,η)≤b}|s).

�

Proof of Proposition 1. By the monotonicity of ρ(., η) and Lemma 3, all the
mass of strategic bids in (ρ(0, η), ρ(1, η)) is placed in a countable collection of disjoint
intervals in which ρ(v, η) = v. Let V be the complement of such set in [0, 1]. Thus,

46This is possible in principle given that H(.|.) is increasing in its first argument and decreasing
in its second argument.
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V ⊇ {v : ρ(v, η) 6= v} by Lemma 3. Assume V is non-empty, otherwise Proposition
1 holds trivially.

Denote B∗(.|.) the cdf of strategic bids and assume that B∗(.|.) is atomless.47

Accordingly, B∗
−
(.|v) = B∗(.|v) for all v ∈ [ρ(0, η), ρ(1, η)] and V can be expressed,

without loss of generality, as the countable union of disjoint closed intervals [vk, vk],
such that ρ(v, η) is given by

H(ρ(v, η)|v) =
1 − γ − (1 − η)B∗(ρ(vk, η)|v)

η
for all v ∈ [vk, vk]. (21)

Further assume that prices are not a.e. equal to values in [vk, vk]. Otherwise,
redefine V not to include such interval.

Notice that B∗(ρ(vk, η)|v) = B∗(ρ(vk, η)|v) by Lemma 3 for all k, including non-
revealing intervals with v1 = 0 (i.e. when ρ(0, η) > 0) and vK = 1 (ρ(1, η) < 1).
Hence, we just need to show that B∗(ρ(vk, η)|v) = F (s∗k|v), for all k and all v ∈
[vk, vk], with s∗k satisfying (9)-(11).

By Lemma 2 and the fact that ρ(0, η) > 0 and ρ(1, η) < 1, there exist v′
k, v

′′
k with

vk < v′
k ≤ v′′

k < vk such that ρ(v, η) ≥ v a.e. in [vk, v
′
k] with strict inequality in a

non-null subset, and ρ(v, η) ≤ v a.e. in [v′′
k , vk] with strict inequality in a non-null

subset.48 But this implies that, if bidding in [vk−1, ρ(vk)] is optimal for a seller with
signal s, i.e. E((V −ρ(V, η))1{V ∈(vk,vk)}|s) ≤ 0, then E((V −ρ(V, η))1{V ∈(vk,vk)}|s

′) < 0
for all s′ < s by Fact 1.49 Hence, bidding above ρ(vk) is strictly dominated by bidding
in [vk−1, ρ(vk)] for all sellers with s′ < s. A symmetric argument can be used for all
s′ > s when it is optimal for a seller with signal s to bid in [ρ(vk), vk+1]. By Lemma
1 the same applies for a buyer. Therefore, B∗(ρ(vk)|v) = F (s∗k|v) for some signal
s∗k > 0. Moreover, s∗k needs to satisfy (9) if vk > 0 and (10) whenever vk < 1, given
that ρ(v, η) = v in (vk−1, vk) and in (vk, vk+1) and that H(.|.), F (.|.) are atomless
distributions. Finally, condition (11) is just the equilibrium condition for a seller
with s ≤ s∗k (s > s∗k) to optimally bid below ρ(vk) (above ρ(vk)), which also implies
that s∗k−1 < s∗k for all k > 1.

Now assume that B∗(.|.) has an atom. Since H(.|.) does not have atoms in
(ρ(0, η), ρ(1, η)), neither can B∗(.|.). An atom of B∗(.|.) at b ∈ (ρ(0, η), ρ(1, η)) would
imply that B

−
(b|b) < B(b|b), creating an atom of the price distribution at b, which

leads to a non-revealing interval where strategic bids are placed, a contradiction of
Lemma 3. Therefore, B∗(.|.) can have an atom only in {ρ(0, η), ρ(1, η)}.

47This implies that ρ(0, η) > 0 and ρ(1, η) < 1, given that H(0) = 0 < 1−γ and H(1) = 1 > 1−γ

by Assumption 3.
48In what follows, I use the convention, v0 = 0 and vK+1 = 1.
49By the linearity of expectations, this is also true when there are non-revealing intervals

above vk satisfying Lemma 2, or subintervals in [v′k, v′′k ] with ρ(v, η) > (<)v. For instance,
if E((V − ρ(V, η))1{V ∈(v

k
,vk)}|s) +

∑

k′>k E((V − ρ(V, η))1{V ∈(v′

k
,v′

k
)}|s) ≤ 0 for some s, with

E((V − ρ(V, η))1{V ∈(v
k
,vk)}|s) < 0, then these inequalities hold strictly for all s′ < s.
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If there is an atom in B∗(.|.) at ρ(0, η), the price distribution may or may not
have an atom at ρ(0, η). If the price distribution has an atom at ρ(0, η), by Lemma
4, B∗(ρ(0, η)|v) = 1 for all v and H(ρ(0, η)|v) = η−γ

η
for all v ≤ ρ−1

+
(ρ(0, η), η).

Accordingly, B∗(ρ(0, η)|v) = F (1|v) and (8) is satisfied. If the price distribution
does not have an atom at ρ(0, η), ρ(0, η) is given by (21), i.e.

H(ρ(0, η)|0) =
1 − γ − (1 − η)B∗(ρ(0, η)|0)

η
. (22)

Hence, if a non-revealing interval starts at ρ(0, η) (i.e. v1 = 0), Lemma 2 applies
to the interval [0, v1] and, by Fact 1, there exists a signal s∗1 > 0 satisfying (11) such
that B∗(ρ(0, η)|v) = F (s∗1|v).

Finally, assume B∗(.|.) has an atom at ρ(1, η). If the price distribution has an
atom at ρ(1, η), B∗

−
(ρ(1, η)|v) = 0 for all v and H(ρ(1, η)|v) = 1−γ

η
for all v ≥

ρ−1
−

(ρ(0, η)) by Lemma 4. Thus, B∗
−
(ρ(1, η)|v) = F (0|v) and (8) is also satisfied. If

the price distribution does not have an atom at ρ(1, η), ρ(1, η) is given by

H(ρ(1, η)|1) =
1 − γ − (1 − η)B∗

−
(ρ(1, η)|1)

η
. (23)

Therefore, if a non-revealing interval ends at ρ(1, η), Lemma 2 applies to the
interval [vK , 1] and, by Fact 1, there exists a signal s∗K < 1 satisfying (11) such that
B∗(ρ(0, η)|v) = F (s∗1|v).

�

Proof of Corollary 1. First, note that by Lemma 2, all intervals (ρ(vk, η), ρ(vk, η))
with strategic bids below and above them satisfy the first part of Corollary 1, i.e.
prices are above values in the lower portion of the interval (vk, vk) and below values in
the upper portion. When there are no strategic bids placed below (ρ(vk, η), ρ(vk, η))
we have that vk = 0 given that H(0) = 0 < 1 − γ implies ρ(0, η) > 0. If there are
strategic bids above this interval part (ii) of Lemma 2 applies. Finally, no strategic
bids above (ρ(vk, η), ρ(vk, η)) lead to vk = 1 and ρ(vk, η) < 1. In addition, if there
are strategic bids below part (i) of Lemma 2 applies. Hence, these two cases also
satisfy the first part of the corollary.

This also applies when there is an atom at (vk, vk). Since atoms can only happen
when there are no bids either below or above the atom (Lemma 4), we are in one of
the above cases.

Regarding the second part of Corollary 1, assume there is a non-revealing interval
(vk, vk) that can be partitioned into two subintervals, (vk, v̂] and (v̂, vk), such that,
in each of them, prices are above values in the lower portion of the subinterval and
below values in the upper portion with E((V − ρ(V, η))1{V ∈(v̂,vk)}|s

∗
k) < 0. In such

case, E((V − ρ(V, η))1{V ∈(vk,v̂]}|s
∗
k) > 0 and a strategic seller bidding below ρ(vk, η)
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with signal close to s∗k would rather deviate and bid v̂ since, by doing so, he can
avoid negative payoffs from trading when v ∈ (vk, v̂]. By symmetry of preferences a
buyer with the same signal would also deviate. �

A.2 Proof of Proposition 2

I provide a series of technical lemmas and facts related to the quantile function
α(., η), which are used in the proof of Proposition 2. They show that α(., η) is
increasing for small values of η, non-monotonic for intermediate values and not well-
defined and decreasing when η is high enough. As shown below, prices must equal
values everywhere in the first case, and cannot be revealing in areas where α(., η) is
either not defined or decreasing.

In what follows, D
i

represents the partial derivative with respect to the ith
argument.

Lemma 5 If Assumptions 1-4 are satisfied the following statements are true:

(i) α(0, η) is well-defined for η < γ, strictly positive and increasing in η; α(1, η)
is well-defined for η < 1 − γ, strictly less than one and decreasing in η.

(ii) If D
1
α(v, η) < 0 then D

1
α(v, η′) < 0 for all η′ > η for which α(v, η) is well

defined.

(iii) There exists η ∈ (0, min{γ, 1−γ}) such that α(., η) is well-defined and strictly
increasing for all η < η, and it is non-monotonic or decreasing for all η > η

in the subset of values where it is well-defined.

(iv) If H ′(v) > 0 for all v such that H(v) = 1− γ, there exists η ∈ [η, 1) such that
α(., η) is decreasing whenever it is well-defined for all η > η.

Proof of Lemma 5.
Part (i): since H(0) = 0 , α(0, η) = F−1( 1−γ

1−η
|0), which is well-defined if η < γ. Since

F (.|v) has full support for all v and 1−γ
1−η

is increasing in η, α(0, η) is increasing in
η. Similarly, H(1) = 1 so s(1, η) = F−1( 1−γ−η

1−η
|0) is well-defined for η < 1 − γ and

decreasing in η.

Part (ii): by the a.e. smoothness of H and F (Assumptions 1 and 3), α(v, η) is a.e.
differentiable. I differentiate both sides of (12) to obtain D

1
α(v, η):

D
1
α(v, η) = −

η
1−η

H ′(v) + D
2
F (α(v, η)|v)

f(α(v, η)|v)
. (24)
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Note that f(.|.) > 0 by the full support assumption. In addition, D
2
F (.|.) < 0

by strict MLRP. Therefore, for D
1
α(v, η) < 0 we need the numerator of (24) to be

negative, i.e.

η

1 − η
H ′(v) + D

2
F (α(v, η)|v) > 0. (25)

Thus, if we show that (25) implies

∂

∂η

[

η

1 − η
H ′(v) + D

2
F (α(v, η)|v)

]

≥ 0,

which is equivalent to

H ′(v)

(1 − η)2
≥ −D

2
f(α(v, η)|v)D

2
α(v, η), (26)

then we would have shown that if the numerator of (24) is negative, it becomes
more negative as η grows. This will suffice to prove part (ii) of the lemma.

Given that D
2
α(v, η) = 1−γ−H(v)

(1−η)2f(α(v,η)|v)
, (26) can be expressed as

H ′(v) ≥ −(1 − γ − H(v))
D

2
f(α(v, η)|v)

f(α(v, η)|v)
. (27)

Therefore, we need to prove that (25) implies (27). By the strict MLRP of f ,
F (s|v)
f(s|v)

is decreasing in v and 1−F (s|v)
f(s|v)

is increasing in v for all s. Thus,

∂

∂v

[

F (s|v)

f(s|v)

]

=
f(s|v)D

2
F (s|v) − D

2
f(s|v)F (s|v)

f 2(s|v)
≤ 0, (28)

and

∂

∂v

[

1 − F (s|v)

f(s|v)

]

=
−f(s|v)D

2
F (s|v) − D

2
f(s|v)(1 − F (s|v))

f 2(s|v)
≥ 0. (29)

Consequently, (28) and (29) imply that
D

2
f(s|v)

f(s|v)
∈

[

D
2
F (s|v)

F (s|v)
,
−D

2
F (s|v)

1−F (s|v)

]

for all

s ∈ (0, 1) and all v.50

We need to consider two possible cases: H(v) < 1 − γ and H(v) > 1 − γ.51

1. H(v) < 1 − γ: if we divide both sides of (25) by F (α(v, η)|v),52 we obtain

50By the full support assumption F (s|v) ∈ (0, 1) for all s ∈ (0, 1) and the bounds on
D

2
f(s|v)

f(s|v)

are well defined.
51If H(v) = 1 − γ, (27) is satisfied given that H ′(v) > 0 is needed for (25) to hold.
52We can do so since F (α(v, η)|v) > 0 whenever H(v) < 1 − γ. Assume F (α(v, η)|v) = 0

otherwise. Then 1 − γ = ηH(v) and H(v) > 1 − γ, a contradiction.
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η

1 − η

H ′(v)

F (α(v, η)|v)
> −

D
2
F (α(v, η)|v)

F (α(v, η)|v)
≥ −

D
2
f(α(v, η)|v)

f(α(v, η)|v)
.

Substituting F (α(v, η)|v) = 1−γ−ηH(v)
1−η

in the above expression and multiplying

both sides by (1 − γ − H(v)) > 0 we get

H ′(v)
η(1 − γ − H(v))

1 − γ − ηH(v)
> −(1 − γ − H(v))

D
2
f(α(v, η)|v)

f(α(v, η)|v)
. (30)

Since H(v) < 1 − γ, γ ∈ (0, 1) and η ∈ (0, 1],53 η(1−γ−H(v))
1−γ−ηH(v)

is strictly positive

and less than one. Hence, (30) implies (27) given that H ′(v) > 0 by (25).

2. H(v) > 1 − γ: two subcases need to be considered. If D
2
f(α(v, η)|v) ≤ 0 the

right-hand side of (27) is non-positive. Thus, (27) is satisfied for all v such
that H ′(v) > 0 and all η. When D

2
f(α(v, η)|v) > 0, by dividing both sides of

(25) by 1 − F (α(v, η)|v) we get54

η

1 − η

H ′(v)

1 − F (α(v, η)|v)
> −

D
2
F (α(v, η)|v)

1 − F (α(v, η)|v)
≥

D
2
f(α(v, η)|v)

f(α(v, η)|v)
.

Substituting F (α(v, η)|v) and rearranging terms, the above inequality becomes

ηH ′(v) > (1 − η + ηH(v) − (1 − γ))
D

2
f(α(v, η)|v)

f(α(v, η)|v)

≥ −(1 − γ − H(v))
D

2
f(α(v, η)|v)

f(α(v, η)|v)
. (31)

The second inequality holds because 1 − η + ηH(v) ≥ H(v) and, therefore,
(1 − η + ηH(v) − (1 − γ)) ≥ −(1 − γ − H(v)) > 0.55 Since η ∈ (0, 1], (31)
implies (27).

Part (iii): first, note that α(., η) is well-defined in [0, 1] iff η ≤ ηγ := min{γ, 1 − γ},

given that 1−γ−ηH(v)
1−η

∈ [1−γ
1−η

, 1−γ−η
1−η

] for all v ∈ [0, 1].

53If (25) holds then η > 0.
54Note that F (α(v, η)|v) < 1 whenever H(v) > 1 − γ. If F (α(v, η)|v) = 1 then 1 − γ − ηH(v) =

1 − η, which can only hold if H(v) < 1 − γ given that 1 − η + ηH(v) = H(v) + (1 − η)(1 − H(v)).
55To see why notice that 1− η + ηH(v) = (1− η)(1−H(v))+H(v), which is at least H(v) given

that η ∈ (0, 1] and H(v) ∈ (1 − γ, 1].
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As η → 0, 1−γ−ηH(v)
1−η

→ 1 − γ. Thus, limη→0 α(v, η) = F−1(1 − γ|v) ∀v. By

Assumptions 1-2, F−1(1−γ|.) is well-defined and strictly increasing in [0, 1]. By the
continuity of F and H , α(., η) is continuous and strictly increasing in [0, 1] for all
η sufficiently small. This takes care of η being strictly positive. We need to show
that there exists η < ηγ such that for all η < η, α(., η) is everywhere increasing,
and for all η > η, there exists some v ∈ [0, 1] such that α(v, η) is well-defined with
D

1
α(v, η) < 0.
Since H(0) = 0 and H(1) = 1, H ′(v) > 0 in a set of asset values with positive

Lebesgue measure, so for high enough η inequality (25) is satisfied for some v.
Assume for the moment that such η is lower than ηγ. By part (ii) of the lemma, if
(25) is satisfied for η and v it will also be satisfied for all η′ > η. Accordingly, if
D

1
α(v, η) > 0, then D

1
α(v, η′′) > 0 for all η′′ < η. Therefore, given that D

1
α(v; .) is

well-defined and continuous in [0, ηγ] for all v, η exists and is given by the highest η

such that D
1
α(v, η) ≥ 0 for all v, i.e.

η := sup
η

{

η ∈ (0, 1) : η ≤ −
D

2
F (F−1(1−γ−ηH(v)

1−η
|v)|v)

H
′(v) − D

2
F (F−1(1−γ−ηH(v)

1−η
|v)|v)

∀v

}

. (32)

It remains to be shown that there is a η < ηγ satisfying (25) for some v. Assume
otherwise that η, the highest η for which there is no v satisfying (25), is greater than
ηγ.

1. If η ≥ γ, then 1−γ
1−η

> 1. Since
1−γ−η

1−η
< 1 and H(.) is continuous, there exists

an interval of values [v, v] such that
1−γ−ηH(v)

1−η
= 1 and

1−γ−ηH(v)

1−η
is strictly

decreasing in v for all v ∈ [v, v]. Hence, by the full support assumption,
α(v, η) = 1 and α(v, η) < 1 for all v ∈ (v, v], which implies that D

1
α(v, η) < 0

for some v, contradicting that (25) is not satisfied by η.

2. If η ≥ 1 − γ, we have that
1−γ−η

1−η
< 0. Since 1−γ

1−η
> 0, there exists an interval

of values [v′, v′] such that
1−γ−ηH(v′)

1−η
= 0 and

1−γ−ηH(v)

1−η
is strictly decreasing

in v for all v ∈ [v′, v′]. Hence, by the full support assumption, α(v′, η) = 0 and
α(v, η) > 0 for all v ∈ [v′, v′), which implies that D

1
α(v, η) < 0 for some v, a

contradiction.

Part (iv): note that, as η → 1, 1−γ−ηH(v)
1−γ

→ ∞ for all v such that H(v) < 1− γ and
1−γ−ηH(v)

1−γ
→ −∞ for all v such that H(v) > 1 − γ. Therefore, for high enough η,

α(., η) is only well-defined in a small neighborhood of all v such that H(v) = 1− γ.
If for any such v we have that H ′(v) > 0 then α(., η) will be decreasing in such
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neighborhood.56 By part (ii) of the lemma, if α(., η) is decreasing, it is decreasing
for all η′ > η. �

Fact 2 Let S be a measurable subset of [0, 1] and s ∈ (0, 1) be such that P(S|v) =
F (s|v) for some v ∈ [0, 1). Then, D

2
P(S|v) ≥ D

2
F (s|v).

Proof of Fact 2. Assume S ∩ [s, 1] is a non-null set, otherwise P(S|v) = F (s|v)
for all v by the full support of F (.|v) for all v. Since P(S|v) = F (s|v) = P([0, s]|v),
we have that

P([s, 1] ∩ S|v) = P([0, s] \ S|v).

By the strict MLRP of F (.|.), the left hand side is strictly greater than the right-
hand side for all v′ > v. Thus, D

2

[

P(S|v) − P([0, s]|v)
]

≥ 0. �

Lemma 6 If α(., η) is strictly decreasing in some interval [v1, v2] then any monotone
equilibrium price ρ(., η) satisfies ρ(v, η) 6= v a.e. in [v1, v2].

Proof of Lemma 6. Assume ρ(v, η) = v and ρ(v′, η) = v′ for some v′ > v with
α(v, η) > α(v′, η). Accordingly, if the mass of strategic bids below v is given by
bidders with signals in [0, α(v, η)], then the mass of bids below v′ > v is strictly
smaller than the mass of bids below v, a contradiction. Hence, it must be that
there is an alternative, well-defined distribution of strategic bids Ba(.|.) such that

Ba(v|v) = 1−γ−ηH(v)
1−η

for all v ∈ [v1, v2]. Since α(., η) is decreasing in that interval,

we have that d
dv

Ba(v|v) = − η
1−η

H ′(v) < D
2
F (α(v, η)|v) (see inequality (25)).

Denoting βa(s, t) the bid of strategic trader t when she receives signal s, we have
that

Ba(v|v) =

∫

T

∫ 1

0

1{βa(s,t)≤v}f(s|v)dsdµ =

∫

T

P(Sa(v, t)|v)dµ,

where Sa(v, t) = {s ∈ [0, 1] : βa(s, t) < v}.

By Fact 2, D
2
P(Sa(v, t)|v) ≥ D

2
F (sa(v, t)|v) with sa(v, t) being the signal such

that P(Sa(v, t)|v) = F (sa(v, t)|v). Accordingly, given that D
1
Ba(v|v) ≥ 0,

d

dv
Ba(v|v) = D

1
Ba(v|v) + D

2
Ba(v|v) ≥

∫

T

D
2
F (sa(v, t)|v)dµ.

56In this case there is a unique v such that H(v) = 1 − γ. Assume otherwise that there are two
such values v, v′ such that H ′(v), H ′(v′) > 0. Since H(0) = 0 and H(1) = 1, by the continuity of
H(.), there would have to be a value v′′ ∈ such that H(v′′) = 1 − γ and H ′(v′′) < 0.
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Therefore, it is enough to show that
∫

T
D

2
F (sa(v, t)|v)dµ ≥ D

2
F (α(v, η)|v)

whenever
∫

T
F (sa(v, t)|v)dµ = F (α(v, η)|v) in order to prove that there is no Ba(.|.)

leading to revealing prices in [v1, v2].

By the strict MLRP we have that, for all v ∈ [v1, v2] and all v′ > v,

0 =

∫

T

F (sa(v, t)|v)dµ− F (α(v, η)|v) =

=

∫

T

∫ sa(v,t)∨α(v,η)

α(v,η)

f(x|v)dxdµ −

∫

T

∫ α(v,η)

α(v,η)∧sa(v,t)

f(x|v)dxdµ

≤

∫

T

∫ sa(v,t)∨α(v,η)

α(v,η)

f(x|v)
f(x|v′)

f(x|v)
dxdµ −

∫

T

∫ α(v,η)

α(v,η)∧sa(v,t)

f(x|v)
f(x|v′)

f(x|v)
dxdµ

=

∫

T

F (sa(v, t)|v′)dµ − F (α(v, η)|v′).

Therefore,
∫

T
D

2
F (sa(v, t)|v)dµ ≥ D

2
F (α(v, η)|v), which implies d

dv
Ba(v|v) ≥

D
2
F (α(v, η)|v), a contradiction. �

Proof of Proposition 2.
The proof is divided into two cases, depending on the value of η. For η ∈ [0, η],

where η > 0 is given by (32), I show that prices are necessarily fully revealing;
whereas when η > η prices cannot be fully revealing. In the latter case, I provide an
algorithm to find monotone equilibrium prices satisfying Proposition 1 and Corollary
1 and show that they exist and are unique. After that, I show that, except for a
very particular class of näıve distributions, there exists η < 1 such that for all η ≥ η

strategic bids are confined outside the range of equilibrium prices, implying that
V = [0, 1].

Before turning into these cases, a prerequisite for existence is that any equilib-
rium prices satisfying Proposition 1 and Corollary 1 are in fact increasing. This
is guaranteed if any block-monotonic distribution of strategic bids leads to market
clearing prices that are increasing. According to Proposition 1, market prices in
non-revealing intervals are given by

H(p|v) =
1 − γ − (1 − η)F (s∗k|v)

η
. (33)

Given any η ∈ (0, 1), the right-hand side of this expression is constant for s∗k ∈
{0, 1} and strictly increasing in v for s∗k ∈ (0, 1). Hence, when H(.|.) satisfies
Assumption 4, the resulting price is increasing in v.

Now I turn into the two cases to be considered, η ∈ [0, η] and η ∈ (η, 1].
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Case 1: (η ∈ [0, η]). The function α(v, η) given by (12) is the quantile of the
signal distribution leading to strategic bids at or below v such that ρ(v, η) = v. By
Lemma 5, α(., η) is increasing for all η < η. This implies that there exists a fully
revealing equilibrium for all η < η, with the distribution of strategic bids satisfying
B∗(v|v) = F (α(v, η)|v). Since prices are fully revealing and agents cannot affect
the price, no strategic trader has an incentive to deviate and, hence, any profile
of bidding strategies yielding B∗ constitutes a BNE. One such profile is given by
β(s, t) = β(s) for all t, with

β(s) =











0 if s ∈ [0, α(0, η)]

v s.t. α(v, η) = s if s ∈ (α(0, η), α(1, η))

1 if s ∈ [α(1, η), 1]

(34)

This takes care of existence of monotone equilibrium for η ∈ [0, η].

Regarding uniqueness of monotone equilibrium prices, assume there exists a
monotone equilibrium with ρ(v, η) 6= v a.e. in (v1, v1) with v1 < v1 for some
η ≤ η. If ρ(v1, η) < ρ(v1, η), by Lemma 3, the mass of strategic bids placed in
[ρ(v1, η), ρ(v1, η)] is zero. Since the distribution of strategic bids is block-monotonic
(Proposition 1), all strategic traders with signals below (above) some signal s∗1 bid
below ρ(v1, η) (above ρ(v1, η)). However, given that α(., η) is increasing, we have
that s∗1 > α(v1, η) and/or s∗1 < α(v1, η).57 When s∗1 > α(v1, η) then ρ(v1, η) < v1

if v1 > 0 or ρ(v, η) = 0 in [0, v′) for some v′ > 0 if v1 = 0, contradicting Corollary
1. On the other hand, if s∗1 < α(v1, η) then ρ(v1, η) > v1 if v1 < 1 or ρ(v, η) = 1
in (v′′, 1] for some v′′ < 1 if v1 = 1, which again violates Corollary 1. Therefore,
the only possibility left is that ρ(v1, η) = ρ(v2, η), i.e. there exist an atom in the
distribution of prices. But, according to Lemma 4, this can only happens when
η ≥ min{γ, 1 − γ}, i.e. when η > η.

Hence, when η ∈ [0, η] any monotone equilibrium price satisfies ρ(v, η) = v.

Case 2: (η ∈ (η, 1]). By part (ii) of Lemma 5 α(., η) is either non-monotonic or
decreasing. Hence, prices cannot be fully revealing, given Lemma 6. The following
algorithm identifies the values {vk}

K
k=1, {vk}

K
k=1 and signals {s∗k}

K
k=1 that satisfy the

conditions of Proposition 1 and Corollary 1, which characterize equilibrium prices.
Then I show that these values and signals always exist and are unique. Finally, I
provide bidding strategies that implement equilibrium prices.

The steps of the algorithm are:

1. Find asset values {vm
i }I

i=1 and {vM
i }I′

i=1 at which α(., η) reaches a local min-
imum and a local maximum, respectively. If α(., η) is not well-defined in an

57Note that α(., η) is strictly increasing for η < η. If η = η and α(., η) is constant in [v1, v1] then
s∗1 = α(v1, η) would involve ρ(v, η) = v in [v1, v1]. Hence, one of these inequalities still needs to
hold for ρ(v, η) 6= v a.e. in [v1, v1].
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interval (v′, v′′) with α(v′, η) or α(v′′, η) ∈ {0, 1}, let v′ be the “unique” local
maximum in that interval when α(v′′, η) = 1 and v′′ be the “unique” local
minimum when α(v′, η) = 0.58 Let vm

0 = 0 and vM
I′+1 = 1.59

2. For each interval {[vm
i−j, v

M
i+1]}

I−1+j
i=1 , with j = 0 if vm

1 = 0 and j = 1 if

vM
1 = 0, find signal values {si}

I−1+j
i=1 such that, when ρ(v, η) satisfies 1 − γ =

ηH(ρ(v, η)|v) + (1 − η)F (si|v), are given by

si =











0 if E((V − ρ(V, η))1{V ∈[vm
i−j ,vm

i−j+1]}|0) > 0,

1 if E((V − ρ(V, η))1{V ∈[vM
i ,vM

i+1]}|1) < 0,

s if E((V − ρ(V, η))1{V ∈[νi(s),νi(s)]}|s) = 0,

(35)

where νi(s), νi(s) are respectively given by

νi(s) =

{

vm
i−j if α(vm

i−j , η) > s,

v ∈ [vm
i−j , v

M
i ] s.t. α(v, η) = s otherwise,

(36)

and

νi(s) =

{

vM
i+1 if α(vM

i+1, η) < s,

v ∈ [vm
i−j+1, v

M
i+1] s.t. α(v, η) = s otherwise.

(37)

3. If si > si+1 merge intervals [vm
i−j, v

M
i+1] and [vm

i+1−j, v
M
i+2] and redefine si = s′i

and νi(s
′
i) = νi+1(s

′
i), with s′i given by

s′i =











0 if E((V − ρ(V, η))1{V ∈[vm
i−j

,vm
i−j+2

]}|0) > 0,

1 if E((V − ρ(V, η))1{V ∈[vM
i ,vM

i+2]}
|1) < 0,

s if E((V − ρ(V, η))1{V ∈[νi(s),νi+1(s)]}|s) = 0.

(38)

Repeat this step until si ≤ si+1 for i = 1, ..., K, with K being the new number
of intervals.

4. Define s∗k = sk, vk = νk(sk) and vk = νk(sk), k = 1, ..., K.

Several things are worth noting. First, each interval [vm
i−j , v

M
i+1] contains vm

i−j+1

and vM
i . Thus, α(., η) is increasing in (vm

i−j, v
M
i ) ∪ (vm

i−j+1, v
M
i+1) and decreasing

58Note that when α(v′′, η) = 1 either α(v′, η) = 1 or it is not well-defined. Similarly, when
α(v′, η) = 0, when α(v′′, η) = 0 or it is not well-defined.

59By the continuity of α(., η), vm
i < vM

i for all i if α(0, η) is a local minimum, and vM
i < vm

i for
all i if α(0, η) is a local maximum.
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in (vM
i , vm

i−j+1).
60 This implies that si ∈

[

α(vm
i−j+1, η), max{α(vM

i , η), α(vM
i+1, η)}

]

.
Assume otherwise that si < α(vm

i−j+1, η) < 1. Then ρ(v, η) > v in [νi(si), νi(si)] since
α(v, η) is above si in [νi(si), v

M
i+1(si)], leading to E((V −ρ(V, η))1{V ∈[νi(si),νi(si)]}|si) <

0 when si < 1, which violates (35). Given these bounds on si, there exists a unique
value ν ′

i(si) ∈ (vM
i , vm

i−j+1) such that α(ν ′
i(si), η) = si. Accordingly, ρ(v, η) > v in

(νi(si), ν
′
i(si)) and ρ(v, η) < v in (ν ′

i(si), νi(si)).
61

Second, νi(.) and νi(.) are increasing, while v′
i(.) is decreasing. By the continuity

assumptions and Fact 1, each tuple (si, νi(si), νi(si)) exists and it is unique. To see
why, note that as si grows the interval where prices are above values (νi(si), ν

′
i(si))

shrinks while (ν ′
i(si), νi(si)) grows. Furthermore, as si grows the probability mass

(conditional on si) associated to (ν ′
i(si), νi(si)) grows relative to the mass associated

to (νi(si), ν
′
i(si)), by the MLRP of F (.|si). Therefore, there is a unique signal si

(which in turn uniquely determines νi(si) and νi(si)) satisfying (35).
Third, when two adjacent intervals with signals si, si+1 are merged (step 3 of

the algorithm), the new pivotal signal s′i lies in (si+1, si). Thus, any subinterval of
[νi(s

′
i), νi+1(s

′
i)] with ρ(v, η) < v is preceded by a subinterval with ρ(v, η) > v, which

means that we can apply the same existence and uniqueness argument to the tuple
(s′i, νi(s

′
i), νi+1(s

′
i)).

Finally, α(., η) is increasing on [0, ν1(s1)], [νi(si), νi+1(si)] and on [νK(sK), 1].
That is, it is increasing in [0, 1]\

⋃

k

[vk, vk], which enables prices to be fully revealing

in such set (Lemma 6).
Given all these facts, (35)-(38) imply that {(s∗k, vk, vk)} satisfy (9)-(11). More-

over, prices given by (8) are monotonic and satisfy Corollary 1.
Since this algorithm provides a unique solution, we need to show that a collection

{(s′h, v
′
h, v

′
h)} not satisfying (35)-(38) violates (9)-(11) or Corollary 1.

Assume that there is a collection {(s′h, v
′
h, v

′
h)} satisfying Proposition 1.

If s′h ∈ (0, 1) then E((V − ρ(V, η))1{V ∈[v′
h
,v′

h
}]|s

′
h) = 0 by (11). In addition, (9)-

(10) and Corollary 1 require that α(v′
h, η) ≥ s′h with equality when v′

h ∈ (0, 1)
and α(v′

h, η) ≤ s′h with equality when v′
h ∈ (0, 1). Corollary 1 further requires

α(v, η) to be increasing at v = v′
h, v

′
h whenever α(v, η) = s′h. All these condi-

tions imply that vh ∈ [vm
i−j , v

M
i ] and vh ∈ [vm

l−j , v
M
l ] for some i, l with i < l. But

then, if i = l + 1, (s′h, v
′
h, v

′
h) = (si, νi, νi) given (35)-(38). On the other hand, if

i < l + 1 let sk, k = i, ..., l, be the signals given by (35). If sk < sk+1 for all k

60Note that for i = 0, vm
i−j = vM

i when vM
1 = 0, and vm

i−j+1 = vM
i+1 for i = 1 when vm

K = 1.
61This is also true when si ∈ {0, 1}. Given (36)-(37), si = 0 implies that νi = vm

i−j and
1−γ−ηH(v)

1−η
< 0 in some interval (v′, vm

i ) (otherwise (35) would be violated), which leads to νi = vm
i

(according to step 1 of the algorithm, vm
i is the upper bound of the interval of values where α(., η)

is not well-defined). The latter implies that ρ(v, η) < v in (v′, νi). Since α(., η) is either increasing
in (vm

i−j , v
M
i ) or above 0 when vm

i−j = 0 (part (i) of Lemma 5), α(v, η) > 0 (and thus ρ(v, η) > v)

in (νi, v
′). Similarly, si = 1 implies that νi = vM

i and 1−γ−ηH(v)
1−η

> 1 in some interval (vM
i , v′),

which means that νi = vM
i+1. Hence, ρ(v, η) > v in (vM

i , v′) and ρ(v, η) < v in (v′, vM
i+1).
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then s′h ∈ (si, sl) for E((V − ρ(V, η))1{V ∈[v′
h
,v′

h
}]|s

′
h) = 0 to hold. But this implies

that E((V − ρ(V, η))1{V ∈[v′
h
,νi(s′h)}]|s

′
h) > 0, which by Fact 1 means that E((V −

ρ(V, η))1{V ∈[νi(s′h),v′

h
}]|s

′
h) < 0. Thus, a strategic trader receiving s′h would rather bid

νi(s
′
h) than bid below v′

h, contradicting that {(s′h, v
′
h, v

′
h)} correspond to equilibrium

prices. Assume then that there exists some i ≤ h ≤ l such that sh ≥ sh+1. In such
case, abusing notation, let {si′} denote the new collection of signals given by (38)
after merging intervals [vm

h−j, v
M
h+1] and [vm

h+1−j , v
M
h+2]. If si′ < si′+1 for some i′ in the

new collection of signals, we again have that E((V − ρ(V, η))1{V ∈[νi′(s
′

h
),v′

h
}]|s

′
h) < 0,

which leads to a profitable deviation by a trader receiving signal s′h. By using this
argument iteratively, we arrive at the conclusion that applying the algorithm to the
subcollection of intervals [vm

i−j, v
M
i+1] that are included in [v′

h, v
′
h] we obtain a unique

signal si such that E((V − ρ(V, η))1{V ∈[νi(si),νi+1(si)]}|si) = 0, with νi(si) ∈ [vm
i−j , v

M
i ]

and νi(si) ∈ [vm
l−j, v

M
l ]. But then, as shown above, (si, νi(si), νi(si)) is the unique

tuple satisfying (36)-(38), which are equivalent to (9)-(11), and that is compatible
with equilibrium behavior by strategic traders. Hence, {(s′h, v

′
h, v

′
h)} cannot part of

a characterization of equilibrium prices if (s′h, v
′
h, v

′
h) 6= (si, νi(si), νi(si)).

If s′h = 0 then v′
h = 0 by part (i) of Lemma 5 and E((V −ρ(V, η))1{V ∈[0,v′

h
}]|0) ≥ 0

by (11). In addition, Corollary 1 requires that ρ(v, η) < v in the upper part of
[0, v′

h), which means that v′
h ∈ [vm

i−j, v
m
i−j+1] for some i = 1, ..., I − 1 + j. But

this can only happen if 1−γ−ηH(v)
1−η

< 0 in some interval (v′, vm
i−j+1). Thus, v′

h =

vm
i−j+1, otherwise v′

1 would not satisfy (10). We need to consider two cases. If
i = 1 we have that the unique triplet satisfying these conditions is (s1, v1, v1)
as defined by the above algorithm. If i > 1 and sl < sl+1 for all l < i, then
E((V − ρ(V, η))1{V ∈[νl+1(sl+1),νl+1(sl+1)]}|sl+1) = 0 with ν l+1(sl+1) < vm

i−j+1 (otherwise
ρ(v, η) < v a.e. in [ν l+1(sl+1), νl+1(sl+1)]) and a trader receiving a signal in (sl, sl+1)
would rather deviate and bid νi(sl+1). Therefore, sl > sl+1 = 0 for some l < i. Using
iterative merging we arrive at the conclusion that either (s′h, v

′
h, v

′
h) = (s∗1, v1, v1) or

that (s′h, v
′
h, v

′
h) violates Proposition 1.

Finally, when s′h = 1 we have that v′
h = 1 by part (i) of Lemma 5 and E((V −

ρ(V, η))1{V ∈[v′

h
}]|1) ≤ 0 by (11). The latter implies that 1−γ−ηH(v)

1−η
> 1 in an interval

(vM
i−j′, v

′) for some i = 1, ..., I ′ with j′ = 0 if vM
I′ < 1 and j = 1 otherwise, whereas

Corollary 1 requires that ρ(v, η) > v in the lower part of (v′
h, 1]. Hence, v′

h = vM
i by

(9). When i = I ′, (sK , vK , vK) is the only triplet satisfying the above conditions. If
i < I ′ it has to be that sl > sl+1 = 0 for some l ≥ i, otherwise a trader receiving a
signal in (sl, sl+1) would rather deviate and bid νl+1(sl+1) > vM

i , given Fact 1 and
that E((V −ρ(V, η))1{V ∈[νl+1(sl),νl(sl)]}|sl) = 0. By the usual merging argument it has
to be that either (s′h, v

′
h, v

′
h) = (s∗K , vK , vK) or that it violates Proposition 1.

This completes the proof that a collection {(s∗k, vk, vk)} satisfying (9)-(11) exists
and it is unique. We just need to provide an example of bidding strategies yielding
such equilibrium prices. The following symmetric strategies implement equilibrium
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prices characterized by {(s∗k, vk, vk)} and (8):

β(s) =











0 if s ∈ [0, s∗1]

v ∈ [vk, vk+1] s.t. α(v, η) = s if s ∈ (s∗k, s
∗
k+1]

1 if s ∈ (s∗K , 1]

(39)

To complete the proof of Proposition 2, we need to show that there exists η such
that V = [0, 1] for all η ≥ η. By Lemma 6, revealing prices can only exist for values
such that α(., η) is increasing. In addition, by Lemma 5, once α(., η) is decreasing
at v it is decreasing for all η′ > η. Therefore, if there exists a share η such that
α(., η) is either decreasing or not well-defined, it will also be so for all η > η. In
this context, the mass of bids at [0, ρ(0, η)] (resp. [ρ(1, η), 1]) is given by the mass
of signals s ≤ s∗1 (s > s∗1), where

s∗1 =







0 if E(V − ρ(V, η)|s) > 0 ∀s,

1 if E(V − ρ(V, η)|s) < 0 ∀s,

s s.t. E(V − ρ(V, η)|s) = 0 otherwise,
(40)

with ρ(v, η) satisfying 1 − γ = ηH(ρ(v, η)|v) + (1 − η)F (si|v). The signal s∗1 exists
and it is unique as shown above.

Note that, by Lemma 5, if for any v such that H(v) = 1 − γ we have that
H ′(v) > 0, then there exists η < 1 such that α(., η) is decreasing for all η > η,
leading to nowhere revealing prices (Lemma 6).

If, however, H ′(v) < 0 for at least a value v satisfying H(v) = 1− γ, a revealing
region may exist around v for all η < 1. To see why, note that for any such value
there are two values v′ and v′′ with v′ < v < v′′ such that H(v′) = H(v′′) = 1 − γ

and H(v′), H(v′′) > 0. Accordingly, for η close to one, α(., η) is decreasing in
a neighborhood of v′ and v′′ and increasing in a neighborhood of v, and by its
continuity, its range in these neighborhoods is the whole unit interval. Thus there are
at least two intervals {[vm

i−j, v
M
i+1]}

I−1+j
i=1 , i = 1, 2 as defined in the above algorithm.

If the two signals satisfying (35) for each interval are such that s1 < s2, there exists
a revealing region in the interval [ν(s1), ν(s2)] with ν(s2), ν(s1) given by (36) and
(37), respectively.

Hence, if H ′(v) > 0 for any value v such that H(v) = 1− γ, then η < 1 whereas
η might be equal to one otherwise. �
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